Light-sheet microscopy with attenuation-compensated propagation-invariant beams

Jonathan Nylk (Lead / Corresponding author), Kaley McCluskey, Miguel A. Preciado, Michael Mazilu, Zhengyi Yang, Frank J. Gunn-Moore, Sanya Aggarwal, Javier A. Tello, David E. K. Ferrier, Kishan Dholakia

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)
16 Downloads (Pure)

Abstract

Scattering and absorption limit the penetration of optical fields into tissue. We demonstrate a new approach for increased depth penetration in light-sheet microscopy: attenuation-compensation of the light field. This tailors an exponential intensity increase along the illuminating propagation-invariant field, enabling the redistribution of intensity strategically within a sample to maximize signal and minimize irradiation. A key attribute of this method is that only minimal knowledge of the specimen transmission properties is required. We numerically quantify the imaging capabilities of attenuation-compensated Airy and Bessel light sheets, showing that increased depth penetration is gained without compromising any other beam attributes. This powerful yet straightforward concept, combined with the self-healing properties of the propagation-invariant field, improves the contrast-to-noise ratio of light-sheet microscopy up to eightfold across the entire field of view in thick biological specimens. This improvement can significantly increase the imaging capabilities of light-sheet microscopy techniques using Airy, Bessel, and other propagation-invariant beam types, paving the way for widespread uptake by the biomedical community.

Original languageEnglish
Article numbereaar4817
Number of pages13
JournalScience Advances
Volume4
Issue number4
DOIs
Publication statusPublished - 6 Apr 2018

Fingerprint Dive into the research topics of 'Light-sheet microscopy with attenuation-compensated propagation-invariant beams'. Together they form a unique fingerprint.

Cite this