Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
Parminder S. Reel (Lead / Corresponding author), Smarti Reel, Josie C.. van Kralingen, Katharina Langton, Katharina Lang, Zoran Erlic, Casper K. Larsen, Laurence Amar, Christina Pamporaki, Paolo Mulatero, Anne Blanchard, Marek Kabat, Stacy Robertson, Scott M. MacKenzie, Angela E. Taylor, Mirko Peitzsch, Filippo Ceccato, Carla Scaroni, Martin Reincke, Matthias KroissMichael C. Dennedy, Alessio Pecori, Silvia Monticone, Jaap Deinum, Gian Paolo Rossi, Livia Lenzini, John D. McClure, Thomas Nind, Alexandra Riddell, Anthony Stell, Christian Cole, Isabella Sudano, Cornelia Prehn, Jerzy Adamski, Anne Paule Gimenez-Roqueplo, Guillaume Assié, Wiebke Arlt, Felix Beuschlein, Graeme Eisenhofer, Eleanor Davies, Maria Christina Zennaro, Emily Jefferson (Lead / Corresponding author)
Dive into the research topics of 'Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study'. Together they form a unique fingerprint.