Abstract
Recent advances in systems biology have driven many aspects of biological research in a direction heavily weighted towards computational, quantitative and predictive analysis, based on, or assisted by mathematical modelling. In particular, mathematical modelling has played a significant role in the development of our understanding of the growth and function of the fungal mycelium. One of the main problems that faces modellers in this context is the choice of scale. In the study of fungal mycelia, the question of scale is expressed in an extreme manner: Their indeterminate growth habit ensures that the investigation of the growth and function of mycelial fungi has to consider scales ranging from the (sub) micron to the kilometer. An excellent and extensive review of the applications of mathematical modelling to fungal growth, conducted up to the mid-1990s, can be found in Prosser (1995). In this article, we will concentrate on work since that date, with the emphasis being on recent developments in understanding fungal mycelia at all scales.
Original language | English |
---|---|
Pages (from-to) | 30-41 |
Number of pages | 12 |
Journal | Fungal Biology Reviews |
Volume | 21 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2007 |
Keywords
- Fungal mycelia
- Mathematical modelling