Projects per year
Abstract
Proper chromosome segregation in mitosis relies on correct kinetochore interaction with spindle microtubules. In early mitosis, each kinetochore usually interacts with the lateral
side of each microtubule and is subsequently tethered at the microtubule end. However, since eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. The consequence of this is unknown. Here we find that, although two kinetochores (two pairs of sister kinetochores) can interact with the lateral side of one microtubule, only one kinetochore can form sustained attachment to the microtubule end in budding yeast. This leads to detachment of the other kinetochore from the microtubule end or its proximity. Intriguingly, in this context, kinetochore sliding along a microtubule towards a spindle pole delays and diminishes discernible kinetochore detachment. This effect expedites collection of the entire set of kinetochores to a spindle pole. We propose that cells are equipped with the kinetochore sliding mechanism to mitigate the problem with multiple kinetochores on one microtubule in early mitosis.
side of each microtubule and is subsequently tethered at the microtubule end. However, since eukaryotic cells carry multiple chromosomes, multiple kinetochores could occasionally interact with a single microtubule. The consequence of this is unknown. Here we find that, although two kinetochores (two pairs of sister kinetochores) can interact with the lateral side of one microtubule, only one kinetochore can form sustained attachment to the microtubule end in budding yeast. This leads to detachment of the other kinetochore from the microtubule end or its proximity. Intriguingly, in this context, kinetochore sliding along a microtubule towards a spindle pole delays and diminishes discernible kinetochore detachment. This effect expedites collection of the entire set of kinetochores to a spindle pole. We propose that cells are equipped with the kinetochore sliding mechanism to mitigate the problem with multiple kinetochores on one microtubule in early mitosis.
Original language | English |
---|---|
Pages (from-to) | 2266-2276 |
Number of pages | 11 |
Journal | Journal of Cell Science |
Volume | 130 |
Issue number | 14 |
Early online date | 25 May 2017 |
DOIs | |
Publication status | Published - 15 Jul 2017 |
Keywords
- Kinetochore
- Microtubule
- Kinetochore sliding
- End-on-attachment
- Early mitosis
- Budding yeast
Fingerprint
Dive into the research topics of 'Mechanisms mitigating problems with multiple kinetochores on one microtubule in early mitosis'. Together they form a unique fingerprint.Projects
- 5 Finished
-
SELFCC: Chromosome Self-clearing Completes Sister Chromatid Separation
Tanaka, T. (Investigator)
COMMISSION OF THE EUROPEAN COMMUNITIES
1/04/13 → 30/09/18
Project: Research
-
Strategic Award: Wellcome Trust Technology Platform
Blow, J. (Investigator), Lamond, A. (Investigator) & Owen-Hughes, T. (Investigator)
1/01/13 → 30/09/18
Project: Research
-
Molecular Mechanisms Regulating the Kinetochore-Microtubule Interaction in Mitosis (Principal Research Fellowship)
Tanaka, T. (Investigator)
1/04/12 → 30/04/21
Project: Research