TY - JOUR
T1 - Metabolic pathways promoting intrahepatic fatty acid accumulation in methionine and choline deficiency
T2 - implications for the pathogenesis of steatohepatitis
AU - Macfarlane, David P.
AU - Zou, Xiantong
AU - Andrew, Ruth
AU - Morton, Nicholas M.
AU - Livingstone, Dawn E. W.
AU - Aucott, Rebecca L.
AU - Nyirenda, Moffat J.
AU - Iredale, John P.
AU - Walker, Brian R.
PY - 2011/2
Y1 - 2011/2
N2 - The pathological mechanisms that distinguish simple steatosis from steatohepatitis (or NASH, with consequent risk of cirrhosis and hepatocellular cancer) remain incompletely defined. Whereas both a methionine-and choline-deficient diet (MCDD) and a choline-deficient diet (CDD) lead to hepatic triglyceride accumulation, MCDD alone is associated with hepatic insulin resistance and inflammation (steatohepatitis). We used metabolic tracer techniques, including stable isotope ([C-13(4)]palmitate) dilution and mass isotopomer distribution analysis (MIDA) of [C-13(2)] acetate, to define differences in intrahepatic fatty acid metabolism that could explain the contrasting effect of MCDD and CDD on NASH in C57Bl6 mice. Compared with control-supplemented (CS) diet, liver triglyceride pool sizes were similarly elevated in CDD and MCDD groups (24.37 +/- 2.4, 45.94 +/- 3.9, and 43.30 +/- 3.5 mu mol/liver for CS, CDD, and MCDD, respectively), but intrahepatic neutrophil infiltration and plasma alanine aminotransferase (31 +/- 3, 48 +/- 4, 231 +/- 79 U/l, P < 0.05) were elevated only in MCDD mice. However, despite loss of peripheral fat in MCDD mice, neither the rate of appearance of palmitate (27.2 +/- 3.5, 26.3 +/- 2.3, and 28.3 +/- 3.5 mu mol.kg(-1).min(-1)) nor the contribution of circulating fatty acids to the liver triglyceride pool differed between groups. Unlike CDD, MCDD had a defect in hepatic triglyceride export that was confirmed using intravenous tyloxapol (142 +/- 21, 122 +/- 15, and 80 +/- 7 mg.kg(-1).h(-1), P < 0.05). Moreover, hepatic de novo lipogenesis was significantly elevated in the MCDD group only (1.4 +/- 0.3, 2.3 +/- 0.4, and 3.4 +/- 0.4 mu mol/day, P < 0.01). These findings suggest that important alterations in hepatic fatty acid metabolism may promote the development of steatohepatitis. Similar mechanisms may predispose to hepatocyte damage in human NASH.
AB - The pathological mechanisms that distinguish simple steatosis from steatohepatitis (or NASH, with consequent risk of cirrhosis and hepatocellular cancer) remain incompletely defined. Whereas both a methionine-and choline-deficient diet (MCDD) and a choline-deficient diet (CDD) lead to hepatic triglyceride accumulation, MCDD alone is associated with hepatic insulin resistance and inflammation (steatohepatitis). We used metabolic tracer techniques, including stable isotope ([C-13(4)]palmitate) dilution and mass isotopomer distribution analysis (MIDA) of [C-13(2)] acetate, to define differences in intrahepatic fatty acid metabolism that could explain the contrasting effect of MCDD and CDD on NASH in C57Bl6 mice. Compared with control-supplemented (CS) diet, liver triglyceride pool sizes were similarly elevated in CDD and MCDD groups (24.37 +/- 2.4, 45.94 +/- 3.9, and 43.30 +/- 3.5 mu mol/liver for CS, CDD, and MCDD, respectively), but intrahepatic neutrophil infiltration and plasma alanine aminotransferase (31 +/- 3, 48 +/- 4, 231 +/- 79 U/l, P < 0.05) were elevated only in MCDD mice. However, despite loss of peripheral fat in MCDD mice, neither the rate of appearance of palmitate (27.2 +/- 3.5, 26.3 +/- 2.3, and 28.3 +/- 3.5 mu mol.kg(-1).min(-1)) nor the contribution of circulating fatty acids to the liver triglyceride pool differed between groups. Unlike CDD, MCDD had a defect in hepatic triglyceride export that was confirmed using intravenous tyloxapol (142 +/- 21, 122 +/- 15, and 80 +/- 7 mg.kg(-1).h(-1), P < 0.05). Moreover, hepatic de novo lipogenesis was significantly elevated in the MCDD group only (1.4 +/- 0.3, 2.3 +/- 0.4, and 3.4 +/- 0.4 mu mol/day, P < 0.01). These findings suggest that important alterations in hepatic fatty acid metabolism may promote the development of steatohepatitis. Similar mechanisms may predispose to hepatocyte damage in human NASH.
U2 - 10.1152/ajpendo.00331.2010
DO - 10.1152/ajpendo.00331.2010
M3 - Article
C2 - 21119028
SN - 0193-1849
VL - 300
SP - E402-E409
JO - AJP - Endocrinology and Metabolism (Endocrinology and Metabolism
JF - AJP - Endocrinology and Metabolism (Endocrinology and Metabolism
IS - 2
ER -