Microbial biomodification of clay minerals

Lin Zhang, Geoffrey Michael Gadd, Zhen Li (Lead / Corresponding author)

Research output: Chapter in Book/Report/Conference proceedingChapter


Clay minerals are important reactive centers in the soil system. Their interactions with microorganisms are ubiquitous and wide-ranging, affecting growth and function, interactions with other organisms, including plants, biogeochemical processes and the fate of organic and inorganic pollutants. Clay minerals have a large specific surface area and cation exchange capacity (CEC) per unit mass, and are abundant in many soil systems, especially those of agricultural significance. They can adsorb microbial cells, exudates, and enzymes, organic and inorganic chemical species, nutrients, and contaminants, and stabilize soil organic matter. Bacterial modification of clays appears to be primarily due to biochemical mechanisms, while fungi can exhibit both biochemical and biomechanical mechanisms, the latter aided by their exploratory filamentous growth habit. Such interactions between microorganisms and clays regulate many critical environmental processes, such as soil development and transformation, the formation of soil aggregates, and the global cycling of multiple elements. Applications of biomodified clay minerals are of relevance to the fields of both agricultural management and environmental remediation. This review provides an overview of the interactions between bacteria, fungi and clay minerals, considers some important gaps in current knowledge, and indicates perspectives for future research.

Original languageEnglish
Title of host publicationAdvances in Applied Microbiology
PublisherAcademic Press Inc.
Publication statusE-pub ahead of print - 26 Sep 2020

Publication series

ISSN (Print)0065-2164


  • Bacteria
  • Biomodification
  • Clay minerals
  • Fungi

Fingerprint Dive into the research topics of 'Microbial biomodification of clay minerals'. Together they form a unique fingerprint.

Cite this