TY - JOUR
T1 - Mitochondria
T2 - a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?
AU - Lipina, Christopher
AU - Irving, Andrew J.
AU - Hundal, Harinder S.
PY - 2014/7/1
Y1 - 2014/7/1
N2 - The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signalling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the function of mitochondria which play a pivotal role in maintaining cellular and systemic energy homeostasis, in large part due to their ability to tightly coordinate glucose and lipid utilisation. Because of this, mitochondrial dysfunction is often associated with peripheral insulin resistance and glucose intolerance, as well as the manifestation of excess lipid accumulation in the obese state. This review aims to highlight the different ways through which the ECS may impact upon mitochondrial abundance and/or oxidative capacity, and where possible, relate these findings to obesity-induced perturbations in metabolic function. Furthermore, we explore the potential implications of these findings in terms of the pathogenesis of metabolic disorders and how these may be used to strategically develop therapies targeting the ECS.
AB - The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signalling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the function of mitochondria which play a pivotal role in maintaining cellular and systemic energy homeostasis, in large part due to their ability to tightly coordinate glucose and lipid utilisation. Because of this, mitochondrial dysfunction is often associated with peripheral insulin resistance and glucose intolerance, as well as the manifestation of excess lipid accumulation in the obese state. This review aims to highlight the different ways through which the ECS may impact upon mitochondrial abundance and/or oxidative capacity, and where possible, relate these findings to obesity-induced perturbations in metabolic function. Furthermore, we explore the potential implications of these findings in terms of the pathogenesis of metabolic disorders and how these may be used to strategically develop therapies targeting the ECS.
U2 - 10.1152/ajpendo.00100.2014
DO - 10.1152/ajpendo.00100.2014
M3 - Article
C2 - 24801388
SN - 0193-1849
VL - 307
SP - E1-E13
JO - AJP - Endocrinology and Metabolism (Endocrinology and Metabolism
JF - AJP - Endocrinology and Metabolism (Endocrinology and Metabolism
IS - 1
ER -