TY - JOUR
T1 - Mitochondrial Substrate Availability and its Role in Lipid-Induced Insulin Resistance and Proinflammatory Signalling in Skeletal Muscle
AU - Lipina, Christopher
AU - Macrae, Katherine
AU - Suhm, Tamara
AU - Weigert, Cora
AU - Blachnio-Zabielska, Agnieszka
AU - Baranowksi, Marcin
AU - Gorski, Jan
AU - Burgess, Karl
AU - Hundal, Harinder S.
PY - 2013/10
Y1 - 2013/10
N2 - The relationship between glucose and lipid metabolism has been of significant interest in understanding the pathogenesis of obesity-induced insulin resistance. To gain insight into this metabolic paradigm, we explored the potential interplay between cellular glucose flux and lipid-induced metabolic dysfunction within skeletal muscle. Here we show that palmitate-induced insulin resistance and pro-inflammation in muscle cells, which is associated with reduced mitochondrial integrity and oxidative capacity, can be attenuated under conditions of glucose-withdrawal or glycolytic inhibition using 2-deoxyglucose (2DG). Importantly, these glucopenic-driven improvements coincide with the preservation of mitochondrial function, and are dependent on palmitate oxidation which becomes markedly enhanced in the absence of glucose. Intriguingly, despite its ability to upregulate mitochondrial palmitate oxidation, glucose withdrawal did not attenuate palmitate-induced increases in total intramyocellular diacylglycerol and ceramide. Furthermore, consistent with our findings in cultured muscle cells, we also report enhanced insulin sensitivity and reduced pro-inflammatory tone in soleus muscle from obese Zucker rats fed a 2DG-supplemented diet. Notably, this improved metabolic status following 2DG dietary intervention is associated with markedly reduced plasma free fatty acids. Collectively, our data highlights the key role that mitochondrial substrate availability plays in lipid-induced metabolic dysregulation both in vitro and in vivo.
AB - The relationship between glucose and lipid metabolism has been of significant interest in understanding the pathogenesis of obesity-induced insulin resistance. To gain insight into this metabolic paradigm, we explored the potential interplay between cellular glucose flux and lipid-induced metabolic dysfunction within skeletal muscle. Here we show that palmitate-induced insulin resistance and pro-inflammation in muscle cells, which is associated with reduced mitochondrial integrity and oxidative capacity, can be attenuated under conditions of glucose-withdrawal or glycolytic inhibition using 2-deoxyglucose (2DG). Importantly, these glucopenic-driven improvements coincide with the preservation of mitochondrial function, and are dependent on palmitate oxidation which becomes markedly enhanced in the absence of glucose. Intriguingly, despite its ability to upregulate mitochondrial palmitate oxidation, glucose withdrawal did not attenuate palmitate-induced increases in total intramyocellular diacylglycerol and ceramide. Furthermore, consistent with our findings in cultured muscle cells, we also report enhanced insulin sensitivity and reduced pro-inflammatory tone in soleus muscle from obese Zucker rats fed a 2DG-supplemented diet. Notably, this improved metabolic status following 2DG dietary intervention is associated with markedly reduced plasma free fatty acids. Collectively, our data highlights the key role that mitochondrial substrate availability plays in lipid-induced metabolic dysregulation both in vitro and in vivo.
U2 - 10.2337/db13-0264
DO - 10.2337/db13-0264
M3 - Article
C2 - 23733201
SN - 0012-1797
VL - 62
SP - 3426
EP - 3436
JO - Diabetes
JF - Diabetes
IS - 10
ER -