Abstract
Inflammation promotes endothelial dysfunction but the underlying mechanisms remain poorly defined in vivo. Using translational vascular function testing in myocardial infarction patients, a situation where inflammation is prevalent, and knock-out (KO) mouse models we demonstrate a role for mitogen-activated-protein-kinases (MAPKs) in endothelial dysfunction. Myocardial infarction significantly lowers mitogen and stress kinase 1/2 (MSK1/2) expression in peripheral blood mononuclear cells and diminished endothelial function. To further understand the role of MSK1/2 in vascular function we developed in vivo animal models to assess vascular responses to vasoactive drugs using laser Doppler imaging. Genetic deficiency of MSK1/2 in mice increased plasma levels of pro-inflammatory cytokines and promoted endothelial dysfunction, through attenuated production of nitric oxide (NO), which were further exacerbated by cholesterol feeding. MSK1/2 are activated by toll-like receptors through MyD88. MyD88 KO mice showed preserved endothelial function and reduced plasma cytokine expression, despite significant hypercholesterolemia. MSK1/2 kinases interact with MAPK-activated proteins 2/3 (MAPKAP2/3), which limit cytokine synthesis. Cholesterol-fed MAPKAP2/3 KO mice showed reduced plasma cytokine expression and preservation of endothelial function. MSK1/2 plays a significant role in the development of endothelial dysfunction and may provide a novel target for intervention to reduce vascular inflammation. Activation of MSK1/2 could reduce pro-inflammatory responses and preserve endothelial vasodilator function before development of significant vascular disease
Original language | English |
---|---|
Article number | 8655 |
Number of pages | 22 |
Journal | International Journal of Molecular Sciences |
Volume | 22 |
Issue number | 16 |
DOIs | |
Publication status | Published - 11 Aug 2021 |
Keywords
- Endothelium
- Vascular Biology
- Vascular Disease
- MAPK
- Cytokine
- Vascular disease
- Vascular biology
ASJC Scopus subject areas
- Molecular Biology
- Spectroscopy
- Catalysis
- Inorganic Chemistry
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry