Projects per year
Abstract
It is generally accepted that tumour cells can be eliminated by M1 anti-tumour macrophages and CD8+ T cells. However, experimental results over the past 10-15 years have shown that B16 mouse melanoma cells can be eliminated by the CD4+ T cells alone (either Th1 or Th2 sub-types), in the absence of CD8+ T cells. In some studies, elimination of B16 melanoma was associated with a Th1 immune response (i.e., elimination occurred in the presence of cytokines produced by Th1 cells), while in other studies melanoma elimination was associated with a Th2 immune response (i.e., elimination occurred in the presence of cytokines produced by Th2 cells). Moreover, macrophages have been shown to be present inside the tumours, during both Th1 and Th2 immune responses. To investigate the possible biological mechanisms behind these apparently contradictory results, we develop a class of mathematical models for the dynamics of Th1 and Th2 cells, and M1 and M2 macrophages in the presence/absence of tumour cells. Using this mathematical model, we show that depending on the re-polarisation rates between M1 and M2 macrophages, we obtain tumour elimination in the presence of a type-I immune response (i.e., more Th1 and M1 cells, compared to the Th2 and M2 cells), or in the presence of a type-II immune response (i.e., more Th2 and M2 cells). Moreover, tumour elimination is also possible in the presence of a mixed type-I/type-II immune response. Tumour growth always occurs in the presence of a type-II immune response, as observed experimentally. Finally, tumour dormancy is the result of a delicate balance between the pro-tumour effects of M2 cells and the anti-tumour effects of M1 and Th1 cells.
Original language | English |
---|---|
Pages (from-to) | 82-104 |
Number of pages | 23 |
Journal | Journal of Theoretical Biology |
Volume | 420 |
Early online date | 20 Feb 2017 |
DOIs | |
Publication status | Published - 7 May 2017 |
Keywords
- M1 and M2 macrophages
- Th1 and Th2 immune cells
- B16 melanoma
- mathematical approach
Fingerprint
Dive into the research topics of 'Modelling and investigation of the CD4+ T cells-macrophages paradox in melanoma immunotherapies'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Mathematical Investigation into the Role of Cell-cell Communication Pathways on Collective Cell Migration (First Grant Scheme)
Eftimie, R. (Investigator)
Engineering and Physical Sciences Research Council
1/11/13 → 31/10/15
Project: Research