TY - JOUR
T1 - Modulation of spinal shape with growth following implantation of a novel surgical implant
AU - Burke, John G.
AU - Vettorato, Enzo
AU - Schöffmann, Gudrun
AU - Clutton, R. Eddie
AU - Drew, Tim S.
AU - Gibson, J. N. Alastair
PY - 2015/7
Y1 - 2015/7
N2 - Purpose: First, to determine whether scoliosis development could be limited or reversed by growth when a novel modular hinged implant was fixed to the convexity of a scoliosis created by contralateral rib and laminar tethering and unilateral rib resection in a sheep model. Second, to assess the effect and performance of the implant in normal non-tethered sheep. Methods: At 5 weeks, 20 Scottish Blackface lambs underwent surgery to create a right sided scoliosis by (i) tethering the left lamina of T5–L1 and the left lower six ribs and (ii) resecting a segment of their right lower six ribs [1, 2]. Twelve weeks later, through an antero-lateral thoracotomy, a mobile bi-planar hinged implant was inserted onto the right side of the spine of eight animals (group 1). For comparison, 12 sheep were tethered only but had no implant insertion (group 2). In addition, seven had no tethering but were implanted (group 3) and normal growth patterns were observed in five that had no surgery (group 4). Curve progression was assessed by plain radiography and CT over a 1-year period. Results: Before implant insertion the trial animals had a scoliosis of 35º ± 16º and a lordosis of 44º ± 20º (n = 8, mean ± SD). Surgery immediately reduced these values to 25º ± 14º, p < 0.01 and 35º ± 18º, p < 0.001, with scoliosis continuing to decrease during the next three months. Spinal flexibility was retained. In the un-tethered sheep, a scoliosis of 10º ± 6º was created on the opposite side to the implant (p < 0.05) with no significant change in alignment in the sagittal plane (1º ± 6º). The implant did not cause any adverse effect on growth or affect neurological function. Conclusions: In the un-tethered animals the effect of the implant was to create a scoliotic deformity and in the tethered to improve deformity while maintaining spinal motion. We believe that the results are promising and that devices of similar construct may be of use in children with scoliosis, potentially changing current methods of clinical care.
AB - Purpose: First, to determine whether scoliosis development could be limited or reversed by growth when a novel modular hinged implant was fixed to the convexity of a scoliosis created by contralateral rib and laminar tethering and unilateral rib resection in a sheep model. Second, to assess the effect and performance of the implant in normal non-tethered sheep. Methods: At 5 weeks, 20 Scottish Blackface lambs underwent surgery to create a right sided scoliosis by (i) tethering the left lamina of T5–L1 and the left lower six ribs and (ii) resecting a segment of their right lower six ribs [1, 2]. Twelve weeks later, through an antero-lateral thoracotomy, a mobile bi-planar hinged implant was inserted onto the right side of the spine of eight animals (group 1). For comparison, 12 sheep were tethered only but had no implant insertion (group 2). In addition, seven had no tethering but were implanted (group 3) and normal growth patterns were observed in five that had no surgery (group 4). Curve progression was assessed by plain radiography and CT over a 1-year period. Results: Before implant insertion the trial animals had a scoliosis of 35º ± 16º and a lordosis of 44º ± 20º (n = 8, mean ± SD). Surgery immediately reduced these values to 25º ± 14º, p < 0.01 and 35º ± 18º, p < 0.001, with scoliosis continuing to decrease during the next three months. Spinal flexibility was retained. In the un-tethered sheep, a scoliosis of 10º ± 6º was created on the opposite side to the implant (p < 0.05) with no significant change in alignment in the sagittal plane (1º ± 6º). The implant did not cause any adverse effect on growth or affect neurological function. Conclusions: In the un-tethered animals the effect of the implant was to create a scoliotic deformity and in the tethered to improve deformity while maintaining spinal motion. We believe that the results are promising and that devices of similar construct may be of use in children with scoliosis, potentially changing current methods of clinical care.
KW - Deformity
KW - Implant design
KW - Lordosis
KW - Scoliosis
KW - Sheep
UR - http://www.scopus.com/inward/record.url?scp=84932608420&partnerID=8YFLogxK
U2 - 10.1007/s00586-014-3610-6
DO - 10.1007/s00586-014-3610-6
M3 - Article
C2 - 25304648
AN - SCOPUS:84932608420
SN - 0940-6719
VL - 24
SP - 1522
EP - 1532
JO - European Spine Journal
JF - European Spine Journal
IS - 7
ER -