Projects per year
Abstract
The contractility of cardiac cells is a key parameter that describes the biomechanical characteristics of the beating heart, but functional monitoring of three-dimensional cardiac tissue with single-cell resolution remains a major challenge. Here, we introduce microscopic whispering-gallery-mode lasers into cardiac cells to realize all-optical recording of transient cardiac contraction profiles with cellular resolution. The brilliant emission and high spectral sensitivity of microlasers to local changes in refractive index enable long-term tracking of individual cardiac cells, monitoring of drug administration, accurate measurements of organ-scale contractility in live zebrafish, and robust contractility sensing through hundreds of micrometres of rat heart tissue. Our study reveals changes in sarcomeric protein density as an underlying factor to cardiac contraction. More broadly, the use of novel micro- and nanoscopic lasers as non-invasive, biointegrated optical sensors brings new opportunities to monitor a wide range of physiological parameters with cellular resolution.
Original language | English |
---|---|
Pages (from-to) | 452-458 |
Number of pages | 7 |
Journal | Nature Photonics |
Volume | 14 |
Issue number | 7 |
Early online date | 15 Jun 2020 |
DOIs | |
Publication status | Published - Jul 2020 |
Keywords
- Biophotonics
- Biophysics
- Imaging and sensing
- Microscopy
- Optical spectroscopy
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
Fingerprint
Dive into the research topics of 'Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers'. Together they form a unique fingerprint.Projects
- 1 Finished
-
A Fully Integrated FLIM-FRET System For Imaging Dynamic Protein - Protein Interactions And Protein Turnover In Single Live Cells And Model Organisms
Appleton, P. (Investigator), Dinkova-Kostova, A. (Investigator), Hiom, K. (Investigator), Januschke, J. (Investigator), MacDonald, M. (Investigator), Saurin, A. (Investigator), Swedlow, J. (Investigator), Tanaka, T. (Investigator) & Weijer, K. (Investigator)
Biotechnology and Biological Sciences Research Council
1/11/20 → 31/03/21
Project: Research