TY - JOUR
T1 - MRSA
T2 - treating people with infection
AU - Rae, Nikolas
AU - Jarchow-MacDonald, Anna
AU - Nathwani, Dilip
AU - Marwick, Charis Ann
PY - 2016/2/16
Y1 - 2016/2/16
N2 - INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) has a gene that makes it resistant to methicillin, as well as to other beta-lactam antibiotics, including flucloxacillin, beta-lactam/beta-lactamase inhibitor combinations, cephalosporins, and carbapenems. MRSA can be part of the normal body flora (colonisation), especially in the nose, but it can cause infection, particularly in people with prolonged hospital admissions, with underlying disease, or after antibiotic use. About 8% of S aureus in blood cultures in England, Wales, and Northern Ireland is resistant to methicillin.METHODS AND OUTCOMES: We conducted a systematic overview, aiming to answer the following clinical question: What are the effects of selected treatments for MRSA infections at any body site? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2014 (Clinical Evidence overviews are updated periodically; please check our website for the most up-to-date version of this overview).RESULTS: At this update, searching of electronic databases retrieved 312 studies. After deduplication and removal of conference abstracts, 133 records were screened for inclusion in the overview. Appraisal of titles and abstracts led to the exclusion of 55 studies and the further review of 78 full publications. Of the 78 full articles evaluated, 15 systematic reviews and one subsequent RCT were added at this update. In addition, six studies were added to the Comment sections. We performed a GRADE evaluation for 12 PICO combinations.CONCLUSIONS: In this systematic overview we categorised the efficacy for five interventions, based on information about the effectiveness and safety of cephalosporins (ceftobiprole, ceftaroline), daptomycin, linezolid, quinupristin-dalfopristin, pristinamycin (streptogramins), and tigecycline.
AB - INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) has a gene that makes it resistant to methicillin, as well as to other beta-lactam antibiotics, including flucloxacillin, beta-lactam/beta-lactamase inhibitor combinations, cephalosporins, and carbapenems. MRSA can be part of the normal body flora (colonisation), especially in the nose, but it can cause infection, particularly in people with prolonged hospital admissions, with underlying disease, or after antibiotic use. About 8% of S aureus in blood cultures in England, Wales, and Northern Ireland is resistant to methicillin.METHODS AND OUTCOMES: We conducted a systematic overview, aiming to answer the following clinical question: What are the effects of selected treatments for MRSA infections at any body site? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2014 (Clinical Evidence overviews are updated periodically; please check our website for the most up-to-date version of this overview).RESULTS: At this update, searching of electronic databases retrieved 312 studies. After deduplication and removal of conference abstracts, 133 records were screened for inclusion in the overview. Appraisal of titles and abstracts led to the exclusion of 55 studies and the further review of 78 full publications. Of the 78 full articles evaluated, 15 systematic reviews and one subsequent RCT were added at this update. In addition, six studies were added to the Comment sections. We performed a GRADE evaluation for 12 PICO combinations.CONCLUSIONS: In this systematic overview we categorised the efficacy for five interventions, based on information about the effectiveness and safety of cephalosporins (ceftobiprole, ceftaroline), daptomycin, linezolid, quinupristin-dalfopristin, pristinamycin (streptogramins), and tigecycline.
M3 - Article
C2 - 26881888
SN - 1462-3846
JO - BMJ Clinical Evidence
JF - BMJ Clinical Evidence
M1 - 0922
ER -