Projects per year
Abstract
Multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent, tandem mass tags (TMT) in particular. Here we used a large iPSC proteomic experiment with twenty-four 10-plex TMT batches to evaluate the effect of integrating multiple TMT batches within a single analysis. We identified a significant inflation rate of protein missing values as multiple batches are integrated and show that this pattern is aggravated at the peptide level. We also show that without normalization strategies to address the batch effects, the high precision of quantitation within a single multiplexed TMT batch is not reproduced when data from multiple TMT batches are integrated.Further, the incidence of false positives was studied by using Y chromosome peptides as an internal control. The iPSC lines quantified in this data set were derived from both male and female donors, hence the peptides mapped to the Y chromosome should be absent from female lines. Nonetheless, these Y chromosome-specific peptides were consistently detected in the female channels of all TMT batches. We then used the same Y chromosome specific peptides to quantify the level of ion coisolation as well as the effect of primary and secondary reporter ion interference. These results were used to propose solutions to mitigate the limitations of multi-batch TMT analyses. We confirm that including a common reference line in every batch increases precision by facilitating normalization across the batches and we propose experimental designs that minimize the effect of cross population reporter ion interference.
Original language | English |
---|---|
Pages (from-to) | 1967-1980 |
Number of pages | 14 |
Journal | Molecular and Cellular Proteomics |
Volume | 18 |
Issue number | 10 |
Early online date | 22 Jul 2019 |
DOIs | |
Publication status | Published - 1 Oct 2019 |
Keywords
- proteomics
- TMT
- mass spectrometry
- isobaric tags
- bioinformatics
- data analysis
- missing values
- false positives
- computational biology
- Tandem mass spectrometry
- ipsc
- data evaluation
ASJC Scopus subject areas
- Analytical Chemistry
- Molecular Biology
- Biochemistry
Fingerprint
Dive into the research topics of 'Multi-batch TMT reveals false positives, batch effects and missing values'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Multidimensional Proteomic Analysis of Metabolic Stress & Cellular Phenotypes (Strategic Grant)
Cantrell, D. (Investigator) & Lamond, A. (Investigator)
1/01/15 → 31/12/19
Project: Research
-
Human iPS Cell Collection (Joint with King's College London, Sanger Centre, European Bioinformatics Institute)
Lamond, A. (Investigator)
1/11/12 → 1/02/18
Project: Research
Student theses
-
Towards population-scale proteomics to study molecular phenotypes in health and disease
Brenes Murillo, A. (Author), Cantrell, D. (Supervisor) & Lamond, A. (Supervisor), 2023Student thesis: Doctoral Thesis › Doctor of Philosophy
File