Multiscale Superpixelwise Prophet Model for Noise-Robust Feature Extraction in Hyperspectral Images

Ping Ma, Jinchang Ren (Lead / Corresponding author), Genyun Sun, Huimin Zhao (Lead / Corresponding author), Xiuping Jia, Yijun Yan, Jaime Zabalza

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)
97 Downloads (Pure)

Abstract

Despite various approaches proposed to smooth the hyperspectral images (HSIs) before feature extraction, the efficacy is still affected by the noise, even using the corrected dataset with the noisy and water absorption bands discarded. In this study, a novel spectral-spatial feature mining framework, multiscale superpixelwise prophet model (MSPM), is proposed for noise-robust feature extraction and effective classification of the HSI. The prophet model is highly noise-robust for deeply digging into the complex structured features, thus enlarging interclass diversity and improving intraclass similarity. First, the superpixelwise segmentation is produced from the first three principal components of an HSI to group pixels into regions with adaptively determined sizes and shapes. A multiscale prophet model is utilized to extract the multiscale informative trend components from the average spectrum of each superpixel. Taking the multiscale trend signal as the input feature, the HSI data are classified superpixelwisely, which is further refined by a majority vote-based decision fusion. Comprehensive experiments on three publicly available datasets have fully validated the efficacy and robustness of our MSPM model when benchmarked with 11 state-of-the-art algorithms, including six spectral-spatial methods and five deep learning ones. Besides, MSPM also shows superiority under limited training samples, due to the combined strategies of superpixelwise fusion and multiscale fusion. Our model has provided a useful solution for noise-robust feature extraction as it achieves superior HSI classification even from the uncorrected dataset without prefiltering the water absorption and noisy bands.

Original languageEnglish
Article number5508912
Number of pages12
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume61
DOIs
Publication statusPublished - 27 Mar 2023

Keywords

  • Hyperspectral image (HSI)
  • multiscale prophet model
  • spectral - spatial feature mining
  • superpixel segmentation

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Multiscale Superpixelwise Prophet Model for Noise-Robust Feature Extraction in Hyperspectral Images'. Together they form a unique fingerprint.

Cite this