Neuro-symbolic representation of logic programs defining infinite sets

Ekaterina Komendantskaya, Krysia Broda, Artur d'Avila Garcez

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    1 Citation (Scopus)

    Abstract

    It has been one of the great challenges of neuro-symbolic integration to represent recursive logic programs using neural networks of finite size. In this paper, we propose to implement neural networks that can process recursive programs viewed as inductive definitions.

    Original languageEnglish
    Title of host publicationArtificial Neural Networks-Icann 2010, Pt I
    EditorsK Diamantaras, W Duch, LS Iliadis
    Place of PublicationBerlin
    PublisherSpringer
    Pages301-304
    Number of pages4
    ISBN (Print)9783642158186
    DOIs
    Publication statusPublished - 2010
    Event20th International Conference on Artificial Neural Networks - Thessaloniki, Greece
    Duration: 15 Sep 201018 Sep 2010
    http://delab.csd.auth.gr/icann2010/index.html

    Conference

    Conference20th International Conference on Artificial Neural Networks
    Abbreviated title20th ICANN 2010
    CountryGreece
    CityThessaloniki
    Period15/09/1018/09/10
    Internet address

    Keywords

    • Neurosymbolic integration
    • Structured learning
    • Mathematical theory of neurocomputing
    • Logic programming

    Cite this

    Komendantskaya, E., Broda, K., & Garcez, A. DA. (2010). Neuro-symbolic representation of logic programs defining infinite sets. In K. Diamantaras, W. Duch, & LS. Iliadis (Eds.), Artificial Neural Networks-Icann 2010, Pt I (pp. 301-304). Berlin: Springer . https://doi.org/10.1007/978-3-642-15819-3_39
    Komendantskaya, Ekaterina ; Broda, Krysia ; Garcez, Artur d'Avila. / Neuro-symbolic representation of logic programs defining infinite sets. Artificial Neural Networks-Icann 2010, Pt I. editor / K Diamantaras ; W Duch ; LS Iliadis. Berlin : Springer , 2010. pp. 301-304
    @inproceedings{4e4b667a37fa42ab8c2a5776c5e35f33,
    title = "Neuro-symbolic representation of logic programs defining infinite sets",
    abstract = "It has been one of the great challenges of neuro-symbolic integration to represent recursive logic programs using neural networks of finite size. In this paper, we propose to implement neural networks that can process recursive programs viewed as inductive definitions.",
    keywords = "Neurosymbolic integration, Structured learning, Mathematical theory of neurocomputing, Logic programming",
    author = "Ekaterina Komendantskaya and Krysia Broda and Garcez, {Artur d'Avila}",
    year = "2010",
    doi = "10.1007/978-3-642-15819-3_39",
    language = "English",
    isbn = "9783642158186",
    pages = "301--304",
    editor = "K Diamantaras and W Duch and LS Iliadis",
    booktitle = "Artificial Neural Networks-Icann 2010, Pt I",
    publisher = "Springer",

    }

    Komendantskaya, E, Broda, K & Garcez, ADA 2010, Neuro-symbolic representation of logic programs defining infinite sets. in K Diamantaras, W Duch & LS Iliadis (eds), Artificial Neural Networks-Icann 2010, Pt I. Springer , Berlin, pp. 301-304, 20th International Conference on Artificial Neural Networks, Thessaloniki, Greece, 15/09/10. https://doi.org/10.1007/978-3-642-15819-3_39

    Neuro-symbolic representation of logic programs defining infinite sets. / Komendantskaya, Ekaterina; Broda, Krysia; Garcez, Artur d'Avila.

    Artificial Neural Networks-Icann 2010, Pt I. ed. / K Diamantaras; W Duch; LS Iliadis. Berlin : Springer , 2010. p. 301-304.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    TY - GEN

    T1 - Neuro-symbolic representation of logic programs defining infinite sets

    AU - Komendantskaya, Ekaterina

    AU - Broda, Krysia

    AU - Garcez, Artur d'Avila

    PY - 2010

    Y1 - 2010

    N2 - It has been one of the great challenges of neuro-symbolic integration to represent recursive logic programs using neural networks of finite size. In this paper, we propose to implement neural networks that can process recursive programs viewed as inductive definitions.

    AB - It has been one of the great challenges of neuro-symbolic integration to represent recursive logic programs using neural networks of finite size. In this paper, we propose to implement neural networks that can process recursive programs viewed as inductive definitions.

    KW - Neurosymbolic integration

    KW - Structured learning

    KW - Mathematical theory of neurocomputing

    KW - Logic programming

    UR - http://www.scopus.com/inward/record.url?scp=78049355710&partnerID=8YFLogxK

    U2 - 10.1007/978-3-642-15819-3_39

    DO - 10.1007/978-3-642-15819-3_39

    M3 - Conference contribution

    SN - 9783642158186

    SP - 301

    EP - 304

    BT - Artificial Neural Networks-Icann 2010, Pt I

    A2 - Diamantaras, K

    A2 - Duch, W

    A2 - Iliadis, LS

    PB - Springer

    CY - Berlin

    ER -

    Komendantskaya E, Broda K, Garcez ADA. Neuro-symbolic representation of logic programs defining infinite sets. In Diamantaras K, Duch W, Iliadis LS, editors, Artificial Neural Networks-Icann 2010, Pt I. Berlin: Springer . 2010. p. 301-304 https://doi.org/10.1007/978-3-642-15819-3_39