Non-surgical adjunctive interventions for accelerating tooth movement in patients undergoing orthodontic treatment

Ahmed El-Angbawi, Grant McIntyre, Padhraig S. Fleming, David Bearn

Research output: Contribution to journalReview articlepeer-review

6 Citations (Scopus)
71 Downloads (Pure)

Abstract

Background: Deviation from a normal bite can be defined as malocclusion. Orthodontic treatment takes 20 months on average to correct malocclusion. Accelerating the rate of tooth movement may help to reduce the duration of orthodontic treatment and associated unwanted effects including orthodontically induced inflammatory root resorption (OIIRR), demineralisation and reduced patient motivation and compliance. Several non-surgical adjuncts have been advocated with the aim of accelerating the rate of orthodontic tooth movement (OTM). 

Objectives: To assess the effect of non-surgical adjunctive interventions on the rate of orthodontic tooth movement and the overall duration of treatment.

Search methods: An information specialist searched five bibliographic databases up to 6 September 2022 and used additional search methods to identify published, unpublished and ongoing studies.

Selection criteria: We included randomised controlled trials (RCTs) of people receiving orthodontic treatment using fixed or removable appliances along with non-surgical adjunctive interventions to accelerate tooth movement. We excluded split-mouth studies and studies that involved people who were treated with orthognathic surgery, or who had cleft lip or palate, or other craniofacial syndromes or deformities.

Data collection and analysis: Two review authors were responsible for study selection, risk of bias assessment and data extraction; they carried out these tasks independently. Disagreements were resolved by discussion amongst the review team to reach consensus. 

Main results: We included 23 studies, none of which were rated as low risk of bias overall. We categorised the included studies as testing light vibrational forces or photobiomodulation, the latter including low level laser therapy and light emitting diode. The studies assessed non-surgical interventions added to fixed or removable orthodontic appliances compared to treatment without the adjunct. A total of 1027 participants (children and adults) were recruited with loss to follow-up ranging from 0% to 27% of the original samples. Certainty of the evidence For all comparisons and outcomes presented below, the certainty of the evidence is low to very low. Light vibrational forces Eleven studies assessed how applying light vibrational forces (LVF) affected orthodontic tooth movement (OTM). There was no evidence of a difference between the intervention and control groups for duration of orthodontic treatment (MD -0.61 months, 95% confidence interval (CI) -2.44 to 1.22; 2 studies, 77 participants); total number of orthodontic appliance adjustment visits (MD -0.32 visits, 95% CI -1.69 to 1.05; 2 studies, 77 participants); orthodontic tooth movement during the early alignment stage (reduction of lower incisor irregularity (LII)) at 4-6 weeks (MD 0.12 mm, 95% CI -1.77 to 2.01; 3 studies, 144 participants), or 10-16 weeks (MD -0.18 mm, 95% CI -1.20 to 0.83; 4 studies, 175 participants); rate of canine distalisation (MD -0.01 mm/month, 95% CI -0.20 to 0.18; 2 studies, 40 participants); or rate of OTM during en masse space closure (MD 0.10 mm per month, 95% CI -0.08 to 0.29; 2 studies, 81 participants). No evidence of a difference was found between LVF and control groups in rate of OTM when using removable orthodontic aligners. Nor did the studies show evidence of a difference between groups for our secondary outcomes, including patient perception of pain, patient-reported need for analgesics at different stages of treatment and harms or side effects. Photobiomodulation Ten studies assessed the effect of applying low level laser therapy (LLLT) on rate of OTM. We found that participants in the LLLT group had a statistically significantly shorter length of time for the teeth to align in the early stages of treatment (MD -50 days, 95% CI -58 to -42; 2 studies, 62 participants) and required fewer appointments (-2.3, 95% CI -2.5 to -2.0; 2 studies, 125 participants). There was no evidence of a difference between the LLLT and control groups in OTM when assessed as percentage reduction in LII in the first month of alignment (1.63%, 95% CI -2.60 to 5.86; 2 studies, 56 participants) or in the second month (percentage reduction MD 3.75%, 95% CI -1.74 to 9.24; 2 studies, 56 participants). However, LLLT resulted in an increase in OTM during the space closure stage in the maxillary arch (MD 0.18 mm/month, 95% CI 0.05 to 0.33; 1 study; 65 participants; very low level of certainty) and the mandibular arch (right side MD 0.16 mm/month, 95% CI 0.12 to 0.19; 1 study; 65 participants). In addition, LLLT resulted in an increased rate of OTM during maxillary canine retraction (MD 0.01 mm/month, 95% CI 0 to 0.02; 1 study, 37 participants). These findings were not clinically significant. The studies showed no evidence of a difference between groups for our secondary outcomes, including OIIRR, periodontal health and patient perception of pain at early stages of treatment. Two studies assessed the influence of applying light-emitting diode (LED) on OTM. Participants in the LED group required a significantly shorter time to align the mandibular arch compared to the control group (MD -24.50 days, 95% CI -42.45 to -6.55, 1 study, 34 participants). There is no evidence that LED application increased the rate of OTM during maxillary canine retraction (MD 0.01 mm/month, 95% CI 0 to 0.02; P = 0.28; 1 study, 39 participants ). In terms of secondary outcomes, one study assessed patient perception of pain and found no evidence of a difference between groups. 

Authors' conclusions: The evidence from randomised controlled trials concerning the effectiveness of non-surgical interventions to accelerate orthodontic treatment is of low to very low certainty. It suggests that there is no additional benefit of light vibrational forces or photobiomodulation for reducing the duration of orthodontic treatment. Although there may be a limited benefit from photobiomodulation application for accelerating discrete treatment phases, these results have to be interpreted with caution due to their questionable clinical significance. Further well-designed, rigorous RCTs with longer follow-up periods spanning from start to completion of orthodontic treatment are required to determine whether non-surgical interventions may reduce the duration of orthodontic treatment by a clinically significant amount, with minimal adverse effects.

Original languageEnglish
Article numberCD010887
Number of pages104
JournalCochrane Database of Systematic Reviews
Volume2023
Issue number6
DOIs
Publication statusPublished - 20 Jun 2023

Keywords

  • Humans
  • Tooth Movement Techniques/adverse effects
  • Malocclusion/therapy
  • Dental Care
  • Pain/etiology
  • Low-Level Light Therapy/adverse effects

ASJC Scopus subject areas

  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Non-surgical adjunctive interventions for accelerating tooth movement in patients undergoing orthodontic treatment'. Together they form a unique fingerprint.

Cite this