Nondestructive Phenolic Compounds Measurement and Origin Discrimination of Peated Barley Malt Using Near-Infrared Hyperspectral Imagery and Machine Learning

Yijun Yan, Jinchang Ren (Lead / Corresponding author), Julius Tschannerl, Huimin Zhao, Barry Harrison, Frances Jack

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)
87 Downloads (Pure)

Abstract

Quantifying phenolic compound in peated barley malt and discriminating its origin are essential to maintain the aroma of high-quality Scottish whisky during the manufacturing process. The content of the total phenol varies in peated barley malts, which is critical in measuring the associated peatiness level. Existing methods for measuring such phenols are destructive and/or time-consuming. To tackle these issues, we propose in this article a novel nondestructive system for fast and effective estimating the phenolic concentrations and discriminating their origins with the near-infrared hyperspectral imagery and machine learning. First, novel ways of data acquisition and normalization are developed for robustness. Then, the principal component analysis (PCA) and folded PCA are fused for extracting the global and local spectral features, followed by the support vector machine (SVM)-based origin discrimination and deep neural network-based phenolic measurement. In total, 27 categories of peated barley malts from eight suppliers are utilized to form thousands of spectral samples for modeling. A classification accuracy up to 99.5% and a squared correlation coefficient up to 98.57% are achieved, outperforming a few state of the art. These have fully demonstrated the efficacy of our system in automated phenolic measurement and origin discrimination to benefit the quality monitoring in the whisky industry.

Original languageEnglish
Article number9437226
Number of pages15
JournalIEEE Transactions on Instrumentation and Measurement
Volume70
DOIs
Publication statusPublished - 20 May 2021

Keywords

  • Machine learning
  • near-infrared (NIR) hyperspectral imagery (HSI)
  • origin discrimination
  • peated barley malt
  • phenolic compound measurement

ASJC Scopus subject areas

  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Nondestructive Phenolic Compounds Measurement and Origin Discrimination of Peated Barley Malt Using Near-Infrared Hyperspectral Imagery and Machine Learning'. Together they form a unique fingerprint.

Cite this