Nonlinear dynamics induced by linear wave interactions in multilayered flows

Anirban Guha (Lead / Corresponding author), Firdaus E. Udwadia

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Using simple kinematics, we propose a general theory of linear wave interactions between the interfacial waves of a two-dimensional (2D), inviscid, multilayered fluid system. The strength of our formalism is that one does not have to specify the physics of the waves in advance. Wave interactions may lead to instabilities, which may or may not be of the familiar 'normal-mode' type. Contrary to intuition, the underlying dynamical system describing linear wave interactions is found to be nonlinear. Specifically, a saw-tooth jet profile with three interfaces possessing kinematic and geometric symmetry is explored. Fixed points of the system for different ranges of a Froude number like control parameter are derived, and their stability evaluated. Depending upon the initial condition and , the dynamical system may reveal transient growth, weakly positive Lyapunov exponents, as well as different nonlinear phenomena such as the formation of periodic and pseudo-periodic orbits. All these occur for those ranges of where normal-mode theory predicts neutral stability. Such rich nonlinear phenomena are not observed in a 2D dynamical system resulting from the two-wave problem, which reveals only stable and unstable nodes.

Original languageEnglish
Pages (from-to)412-427
Number of pages16
JournalJournal of Fluid Mechanics
Volume816
Early online date6 Mar 2017
DOIs
Publication statusPublished - 10 Apr 2017

Keywords

  • Instability
  • Shear layers
  • Waves/free-surface flows

Fingerprint Dive into the research topics of 'Nonlinear dynamics induced by linear wave interactions in multilayered flows'. Together they form a unique fingerprint.

  • Profiles

    No photo of Anirban Guha

    Guha, Anirban

    Person: Academic

    Cite this