Abstract
ΔNp63, also known as p40, regulates stemness of normal mammary gland epithelium and provides stem cell characteristics in basal and HER2-driven murine breast cancer models. Whilst ΔNp63/p40 is a characteristic feature of normal basal cells and basal-type triple-negative breast cancer, some receptor-positive breast cancers express ΔNp63/p40 and its overexpression imparts cancer stem cell-like properties in ER+ cell lines. However, the incidence of ER+ and HER2+ tumours that express ΔNp63/p40 is unclear and the phenotype of ΔNp63/p40+ cells in these tumours remains uncertain. Using immunohistochemistry with p63 isoform-specific antibodies, we identified a ΔNp63/p40+ tumour cell sub-population in 100 of 173 (58%) non-triple negative breast cancers and the presence of this population associated with improved survival in patients with ER- /HER2+ tumours (p = 0.006). Furthermore, 41% of ER+ /PR+ and/or HER2+ locally metastatic breast cancers expressed ΔNp63/p40, and these cells commonly accounted for <1% of the metastatic tumour cell population that localised to the tumour/stroma interface, exhibited an undifferentiated phenotype and were CD44+ /ALDH- . In vitro studies revealed that MCF7 and T47D (ER+ ) and BT-474 (HER2+ ) breast cancer cell lines similarly contained a small sub-population of ΔNp63/p40+ cells that increased in mammospheres. In vivo, MCF7 xenografts contained ΔNp63/p40+ cells with a similar phenotype to primary ER+ cancers. Consistent with tumour samples, these cells also showed a distinct location at the tumour/stroma interface, suggesting a role for paracrine factors in the induction or maintenance of ΔNp63/p40. Thus, ΔNp63/p40 is commonly present in a small population of tumour cells with a distinct phenotype and location in ER+ and/or HER2+ human breast cancers. This article is protected by copyright. All rights reserved.
Original language | English |
---|---|
Number of pages | 11 |
Journal | Journal of Pathology: Clinical Research |
Volume | 6 |
Issue number | 1 |
Early online date | 7 Oct 2019 |
DOIs | |
Publication status | Published - Jan 2020 |
Keywords
- p63
- ∆Np63
- p40
- breast
- cancer stem cells
- oestrogen receptor
- HER2
- aldehyde dehydrogenase
- CD44
- ΔNp63
- Delta Np63
ASJC Scopus subject areas
- Pathology and Forensic Medicine