Nuclear organization of splicing small nuclear ribonucleoproteins in adenovirus-infected cells

E. Bridge, M. Carmo-Fonseca, A. Lamond, U. Pettersson (Lead / Corresponding author)

Research output: Contribution to journalArticle

45 Citations (Scopus)


We have studied the effect of adenovirus infection on the nuclear organization of splicing small nuclear ribonucleoproteins (snRNPs) in HeLa cells. In uninfected HeLa cells, snRNPs are widespread throughout the nucleoplasm but also are concentrated in specific nuclear structures, including coiled bodies, interchromatin granules, and perichromatin fibrils. We have used immunofluorescence microscopy to study the localization of splicing snRNPs relative to centers of viral DNA synthesis and accumulation identified with antiserum against the viral 72,000-molecular-weight single- stranded DNA-binding protein (72K protein). Splicing snRNPs were independently detected with both monoclonal and polyclonal antibodies specific for common snRNP antigens, snRNP-specific proteins, and the snRNA- specific 2,2,7-trimethylguanosine 5' cap structure. We have examined infected cells 2 to 24 h after infection, and, in the majority of these cells, we observed no colocalization of the snRNP and 72K-protein staining patterns. In the late phase, snRNPs were found to markedly concentrate in discrete clusters that were distinct from the centers of viral DNA synthesis and accumulation identified with anti-72K protein. We have treated cells with hydroxyurea at various times after infection to inhibit aspects of the virus infectious program. We have found that the accumulation of snRNP clusters is correlated with late gene expression rather than with DNA synthesis or early gene expression. Finally, we show that the late-phase snRNP clusters colocalize with a monoclonal antibody that primarily stains interchromatin granules. These results suggest that the centers of snRNP concentration in late-phase infected cells are likely to correspond to interchromatin granule clusters.

Original languageEnglish
Pages (from-to)5792-5802
Number of pages11
JournalJournal of Virology
Issue number10
Publication statusPublished - 1 Oct 1993


Cite this