On the distribution of real eigenvalues in linear viscoelastic oscillators

Seyyed Abbas Mohammadi (Lead / Corresponding author), Heinrich Voss

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In this paper, a linear viscoelastic system is considered where the viscoelastic force depends on the past history of motion via a convolution integral over an exponentially decaying kernel function. The free-motion equation of this nonviscous system yields a nonlinear eigenvalue problem that has a certain number of real eigenvalues corresponding to the nonoscillatory nature. The quality of the current numerical methods for deriving those eigenvalues is directly related to damping properties of the viscoelastic system. The main contribution of this paper is to explore the structure of the set of nonviscous eigenvalues of the system while the damping coefficient matrices are rank deficient and the damping level is changing. This problem will be investigated in the cases of low and high levels of damping, and a theorem that summarizes the possible distribution of real eigenvalues will be proved. Moreover, upper and lower bounds are provided for some of the eigenvalues regarding the damping properties of the system. Some physically realistic examples are provided, which give us insight into the behavior of the real eigenvalues while the damping level is changing.
Original languageEnglish
Article numbere2228
Number of pages13
JournalNumerical Linear Algebra with Applications
Volume26
Issue number2
Early online date8 Jan 2019
DOIs
Publication statusPublished - 2019

Keywords

  • damping properties
  • distribution of eigenvalues
  • nonlinear eigenvalue problems
  • nonviscous eigenvalues
  • variational characterization
  • viscoelastic oscillators

Fingerprint

Dive into the research topics of 'On the distribution of real eigenvalues in linear viscoelastic oscillators'. Together they form a unique fingerprint.

Cite this