Abstract
We present a detailed study of the linear stability of the plane Couette-Poiseuille flow in the presence of a crossflow. The base flow is characterized by the crossflow Reynolds number Rinj and the dimensionless wall velocity k. Squire's transformation may be applied to the linear stability equations and we therefore consider two-dimensional (spanwise-independent) perturbations. Corresponding to each dimensionless wall velocity, k ∈ [0, 1], two ranges of Rinj exist where unconditional stability is observed. In the lower range of Rinj, for modest k we have a stabilization of long wavelengths leading to a cutoff Rinj. This lower cutoff results from skewing of the velocity profile away from a Poiseuille profile, shifting of the critical layers and the gradual decrease of energy production. Crossflow stabilization and Couette stabilization appear to act via very similar mechanisms in this range, leading to the potential for a robust compensatory design of flow stabilization using either mechanism. As Rinj is increased, we see first destabilization and then stabilization at very large Rinj. The instability is again a long-wavelength mechanism. An analysis of the eigenspectrum suggests the cause of instability is due to resonant interactions of Tollmien-Schlichting waves. A linear energy analysis reveals that in this range the Reynolds stress becomes amplified, the critical layer is irrelevant and viscous dissipation is completely dominated by the energy production/negation, which approximately balances at criticality. The stabilization at very large Rinj appears to be due to decay in energy production, which diminishes like Rinj 1. Our study is limited to two-dimensional, spanwise-independent perturbations.
Original language | English |
---|---|
Pages (from-to) | 417-447 |
Number of pages | 31 |
Journal | Journal of Fluid Mechanics |
Volume | 656 |
Early online date | 2 Jun 2010 |
DOIs | |
Publication status | Published - 10 Aug 2010 |
ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering