On the stability of plane Couette-Poiseuille flow with uniform crossflow

Anirban Guha (Lead / Corresponding author), Ian A. Frigaard

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

We present a detailed study of the linear stability of the plane Couette-Poiseuille flow in the presence of a crossflow. The base flow is characterized by the crossflow Reynolds number Rinj and the dimensionless wall velocity k. Squire's transformation may be applied to the linear stability equations and we therefore consider two-dimensional (spanwise-independent) perturbations. Corresponding to each dimensionless wall velocity, k ∈ [0, 1], two ranges of Rinj exist where unconditional stability is observed. In the lower range of Rinj, for modest k we have a stabilization of long wavelengths leading to a cutoff Rinj. This lower cutoff results from skewing of the velocity profile away from a Poiseuille profile, shifting of the critical layers and the gradual decrease of energy production. Crossflow stabilization and Couette stabilization appear to act via very similar mechanisms in this range, leading to the potential for a robust compensatory design of flow stabilization using either mechanism. As Rinj is increased, we see first destabilization and then stabilization at very large Rinj. The instability is again a long-wavelength mechanism. An analysis of the eigenspectrum suggests the cause of instability is due to resonant interactions of Tollmien-Schlichting waves. A linear energy analysis reveals that in this range the Reynolds stress becomes amplified, the critical layer is irrelevant and viscous dissipation is completely dominated by the energy production/negation, which approximately balances at criticality. The stabilization at very large Rinj appears to be due to decay in energy production, which diminishes like Rinj 1. Our study is limited to two-dimensional, spanwise-independent perturbations.

Original languageEnglish
Pages (from-to)417-447
Number of pages31
JournalJournal of Fluid Mechanics
Volume656
Early online date2 Jun 2010
DOIs
Publication statusPublished - 10 Aug 2010

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'On the stability of plane Couette-Poiseuille flow with uniform crossflow'. Together they form a unique fingerprint.

Cite this