Abstract
A human appearance modelling framework where colour distributions are associated with surface regions on an articulated body model is presented. In general, these distributions are unknown, multi-modal and changing in time. We therefore propose using recursively updated histograms to represent them. For a certain pose, a set of histograms may be collected and a likelihood constructed based on the histograms' similarity with the previously learned histograms. To ease histogram estimation and improve computational efficiency, a merging and splitting algorithm is derived which groups surface regions based upon histogram similarity and prior knowledge of clothing layout. An investigation of the behaviour of this likelihood shows it to be broad, smooth and peaked around the correct location, a good candidate for coarse sampling and gradient-based search methods. We show how conditioning the likelihood to maximise foreground usage reduces secondary maxima. Finally, we present results from tracking a challenging sequence.
Original language | English |
---|---|
Title of host publication | Proceedings. 16th International Conference on Pattern Recognition 2002. |
Editors | Ira Kasturi, D. Laurendeau, C. Suen |
Place of Publication | California |
Publisher | IEEE Computer Society |
Pages | 424-428 |
Number of pages | 5 |
Volume | 1 |
ISBN (Print) | 076951695X |
DOIs | |
Publication status | Published - Aug 2002 |
Event | 16th International Conference on Pattern Recognition - Quebec, Canada Duration: 11 Aug 2002 → 15 Aug 2002 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8091 |
Conference
Conference | 16th International Conference on Pattern Recognition |
---|---|
Country/Territory | Canada |
City | Quebec |
Period | 11/08/02 → 15/08/02 |
Internet address |