Oxygen hole formation controls stability in LiNiO2 cathodes

Annalena R. Genreith-Schriever, Hrishit Banerjee, Ashok S. Menon, Euan N. Bassey, Louis F. J. Piper, Clare P. Grey (Lead / Corresponding author), Andrew J. Morris (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)
24 Downloads (Pure)


Ni-rich lithium-ion cathode materials achieve both high voltages and capacities but are prone to structural instabilities and oxygen loss. The origin of the instability lies in the pronounced oxidation of O during delithiation: for LiNiO2, NiO2, and the rock salt NiO, density functional theory and dynamical mean-field theory calculations based on maximally localized Wannier functions yield a Ni charge state of ca. +2, with O varying between −2 (NiO), −1.5 (LiNiO2), and −1 (NiO2). Calculated X-ray spectroscopy Ni K and O K-edge spectra agree well with experimental spectra. Using ab initio molecular dynamics simulations, we observe loss of oxygen from the (012) surface of delithiated LiNiO2, two surface O⋅− radicals combining to form a peroxide ion, and the peroxide ion being oxidized to form O2, leaving behind two O vacancies and two O2− ions. Preferential release of 1O2 is dictated via the singlet ground state of the peroxide ion and spin conservation.
Original languageEnglish
Pages (from-to)1623-1640
Number of pages18
Issue number7
Publication statusPublished - 19 Jul 2023


Dive into the research topics of 'Oxygen hole formation controls stability in LiNiO2 cathodes'. Together they form a unique fingerprint.

Cite this