Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Serine65

Agne Kazlauskaite (Lead / Corresponding author), Chandana Kondapalli, Robert Gourlay, David G. Campbell, Maria Stella Ritorto, Kay Hofmann, Dario R. Alessi, Axel Knebel, Matthias Trost, Miratul M. K. Muqit (Lead / Corresponding author)

Research output: Contribution to journalArticle

334 Citations (Scopus)
73 Downloads (Pure)

Abstract

We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (?Ubl-Parkin) is robustly activated by ubiquitinPhospho-Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho-Ser65) can also activate ?Ubl-Parkin similarly to ubiquitinPhospho-Ser65. Thirdly, we establish that ubiquitinPhospho-Ser65, but not non-phosphorylated ubiquitin or UblPhospho-Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho-Ser65, suggesting that small molecules that mimic ubiquitinPhospho-Ser65 could hold promise as novel therapies for Parkinson's disease.

Original languageEnglish
Pages (from-to)127-139
Number of pages13
JournalBiochemical Journal
Volume460
Issue number1
DOIs
Publication statusPublished - 15 May 2014

Fingerprint

Phosphorylation
Ubiquitin
Ubiquitin-Protein Ligases
Chemical activation
PTEN-induced putative kinase
Parkinson Disease
Phosphotransferases
Uncoupling Agents
Phosphopeptides
Enzyme Activation
Depolarization

Cite this

Kazlauskaite, Agne ; Kondapalli, Chandana ; Gourlay, Robert ; Campbell, David G. ; Ritorto, Maria Stella ; Hofmann, Kay ; Alessi, Dario R. ; Knebel, Axel ; Trost, Matthias ; Muqit, Miratul M. K. / Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Serine65. In: Biochemical Journal. 2014 ; Vol. 460, No. 1. pp. 127-139.
@article{d20d1c038b7b427b8234b31020ecae6e,
title = "Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Serine65",
abstract = "We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (?Ubl-Parkin) is robustly activated by ubiquitinPhospho-Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho-Ser65) can also activate ?Ubl-Parkin similarly to ubiquitinPhospho-Ser65. Thirdly, we establish that ubiquitinPhospho-Ser65, but not non-phosphorylated ubiquitin or UblPhospho-Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho-Ser65, suggesting that small molecules that mimic ubiquitinPhospho-Ser65 could hold promise as novel therapies for Parkinson's disease.",
author = "Agne Kazlauskaite and Chandana Kondapalli and Robert Gourlay and Campbell, {David G.} and Ritorto, {Maria Stella} and Kay Hofmann and Alessi, {Dario R.} and Axel Knebel and Matthias Trost and Muqit, {Miratul M. K.}",
year = "2014",
month = "5",
day = "15",
doi = "10.1042/BJ20140334",
language = "English",
volume = "460",
pages = "127--139",
journal = "Biochemical Journal",
issn = "0264-6021",
publisher = "Portland Press",
number = "1",

}

Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Serine65. / Kazlauskaite, Agne (Lead / Corresponding author); Kondapalli, Chandana; Gourlay, Robert; Campbell, David G.; Ritorto, Maria Stella; Hofmann, Kay; Alessi, Dario R.; Knebel, Axel; Trost, Matthias; Muqit, Miratul M. K. (Lead / Corresponding author).

In: Biochemical Journal, Vol. 460, No. 1, 15.05.2014, p. 127-139.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Serine65

AU - Kazlauskaite, Agne

AU - Kondapalli, Chandana

AU - Gourlay, Robert

AU - Campbell, David G.

AU - Ritorto, Maria Stella

AU - Hofmann, Kay

AU - Alessi, Dario R.

AU - Knebel, Axel

AU - Trost, Matthias

AU - Muqit, Miratul M. K.

PY - 2014/5/15

Y1 - 2014/5/15

N2 - We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (?Ubl-Parkin) is robustly activated by ubiquitinPhospho-Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho-Ser65) can also activate ?Ubl-Parkin similarly to ubiquitinPhospho-Ser65. Thirdly, we establish that ubiquitinPhospho-Ser65, but not non-phosphorylated ubiquitin or UblPhospho-Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho-Ser65, suggesting that small molecules that mimic ubiquitinPhospho-Ser65 could hold promise as novel therapies for Parkinson's disease.

AB - We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (?Ubl-Parkin) is robustly activated by ubiquitinPhospho-Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho-Ser65) can also activate ?Ubl-Parkin similarly to ubiquitinPhospho-Ser65. Thirdly, we establish that ubiquitinPhospho-Ser65, but not non-phosphorylated ubiquitin or UblPhospho-Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho-Ser65, suggesting that small molecules that mimic ubiquitinPhospho-Ser65 could hold promise as novel therapies for Parkinson's disease.

UR - http://www.scopus.com/inward/record.url?scp=84899421556&partnerID=8YFLogxK

U2 - 10.1042/BJ20140334

DO - 10.1042/BJ20140334

M3 - Article

C2 - 24660806

VL - 460

SP - 127

EP - 139

JO - Biochemical Journal

JF - Biochemical Journal

SN - 0264-6021

IS - 1

ER -

Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Serine65. Biochemical Journal. 2014 May 15;460(1):127-139. https://doi.org/10.1042/BJ20140334