TY - JOUR
T1 - Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice
AU - Brami-Cherrier, Karen
AU - Valjent, Emmanuel
AU - Hervé, Denis
AU - Darragh, Joanne
AU - Corvol, Jean-Christophe
AU - Pages, Christiane
AU - Simon, Arthur J.
AU - Girault, Jean-Antoine
AU - Caboche, Jocelyne
N1 - Copyright © 2005 Society for Neuroscience
Work at Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, was supported in part by grants from Mission Interministérielle de Lutte contre la Drogue et la Toxicomanie (MILDT) and Ministère délégué à l'Enseignement supérieur et à la Recherche [Action Concertée Incitative (ACI): Développement et Biologie Intégrative]. Work at Institut National de la Santé et de la Recherche Médicale, Unité 536, was supported by grants from MILDT, ACI, Fondation Schlumberger pour l'Enseignement et la Recherche (FSER), and Bettencourt-Schueller Foundation. S.A. was funded by the British Medical Research Council, Astra-Zeneca, Boehringer-Ingelheim, GlaxoSmith-Kline, Merck and Company, Merck Germany, and Pfizer. K.B.-C. was supported by a fellowship from the Jérôme Lejeune Foundation. E.V. was supported by FSER and Foundation for Medical Research.
PY - 2005/12/7
Y1 - 2005/12/7
N2 - Although the induction of persistent behavioral alterations by drugs of abuse requires the regulation of gene transcription, the precise intracellular signaling pathways that are involved remain mainly unknown. Extracellular signal-regulated kinase (ERK) is critical for the expression of immediate-early genes in the striatum in response to cocaine and Δ9-tetrahydrocannabinol and for the rewarding properties of these drugs. Here we show that in mice a single injection of cocaine (10 mg/kg) activates mitogen- and stress-activated protein kinase 1 (MSK1) in dorsal striatum and nucleus accumbens. Cocaine-induced phosphorylation of MSK1 threonine 581 and cAMP response element-binding protein (CREB) serine 133 (Ser133) were blocked by SL327, a drug that prevents ERK activation. Cocaine increased the acetylation of histone H4 lysine 5 and phosphorylation of histone H3 Ser10, demonstrating the existence of drug-induced chromatin remodeling in vivo. In MSK1 knock-out (KO) mice CREB and H3 phosphorylation in response to cocaine (10 mg/kg) were blocked, and induction of c-Fos and dynorphin was prevented, whereas the induction of Egr-1 (early growth response-1)/zif268/Krox24 was unaltered. MSK1-KO mice had no obvious neurological defect but displayed a contrasted behavioral phenotype in response to cocaine. Acute effects of cocaine and dopamine D1 or D2 agonists were unaltered. Sensitivity to low doses, but not high doses, of cocaine was increased in the conditioned place preference paradigm, whereas locomotor sensitization to repeated injections of cocaine was decreased markedly. Our results show that MSK1 is a major striatal kinase, downstream from ERK, responsible for the phosphorylation of CREB and H3 and is required specifically for the induction of c-Fos and dynorphin as well as for locomotor sensitization.
AB - Although the induction of persistent behavioral alterations by drugs of abuse requires the regulation of gene transcription, the precise intracellular signaling pathways that are involved remain mainly unknown. Extracellular signal-regulated kinase (ERK) is critical for the expression of immediate-early genes in the striatum in response to cocaine and Δ9-tetrahydrocannabinol and for the rewarding properties of these drugs. Here we show that in mice a single injection of cocaine (10 mg/kg) activates mitogen- and stress-activated protein kinase 1 (MSK1) in dorsal striatum and nucleus accumbens. Cocaine-induced phosphorylation of MSK1 threonine 581 and cAMP response element-binding protein (CREB) serine 133 (Ser133) were blocked by SL327, a drug that prevents ERK activation. Cocaine increased the acetylation of histone H4 lysine 5 and phosphorylation of histone H3 Ser10, demonstrating the existence of drug-induced chromatin remodeling in vivo. In MSK1 knock-out (KO) mice CREB and H3 phosphorylation in response to cocaine (10 mg/kg) were blocked, and induction of c-Fos and dynorphin was prevented, whereas the induction of Egr-1 (early growth response-1)/zif268/Krox24 was unaltered. MSK1-KO mice had no obvious neurological defect but displayed a contrasted behavioral phenotype in response to cocaine. Acute effects of cocaine and dopamine D1 or D2 agonists were unaltered. Sensitivity to low doses, but not high doses, of cocaine was increased in the conditioned place preference paradigm, whereas locomotor sensitization to repeated injections of cocaine was decreased markedly. Our results show that MSK1 is a major striatal kinase, downstream from ERK, responsible for the phosphorylation of CREB and H3 and is required specifically for the induction of c-Fos and dynorphin as well as for locomotor sensitization.
KW - CREB phosphorylation
KW - Drug addiction
KW - Extracellular signal-regulated kinase
KW - Histone modification
KW - Immediate-early genes
KW - Long-term behavioral responses
UR - http://www.scopus.com/inward/record.url?scp=30544436932&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.1711-05.2005
DO - 10.1523/JNEUROSCI.1711-05.2005
M3 - Article
C2 - 16339038
AN - SCOPUS:30544436932
SN - 0270-6474
VL - 25
SP - 11444
EP - 11454
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 49
ER -