Projects per year
Abstract
Perivascular Spaces (PVS) are a feature of Small Vessel Disease (SVD), and are an important part of the brain's circulation and glymphatic drainage system. Quantitative analysis of PVS on Magnetic Resonance Images (MRI) is important for understanding their relationship with neurological diseases. In this work, we propose a segmentation technique based on the 3D Frangi filtering for extraction of PVS from MRI. We used ordered logit models and visual rating scales as alternative ground truth for Frangi filter parameter optimization and evaluation. We optimized and validated our proposed models on two independent cohorts, a dementia sample (N = 20) and patients who previously had mild to moderate stroke (N = 48). Results demonstrate the robustness and generalisability of our segmentation method. Segmentation-based PVS burden estimates correlated well with neuroradiological assessments (Spearman's ρ = 0.74, p < 0.001), supporting the potential of our proposed method.
Original language | English |
---|---|
Article number | 2132 |
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | Scientific Reports |
Volume | 8 |
Issue number | 1 |
Early online date | 1 Feb 2018 |
DOIs | |
Publication status | Published - 2018 |
ASJC Scopus subject areas
- General
Fingerprint
Dive into the research topics of 'Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Multi-modal Retinal Biomarkers for Vascular Dementia; Developing and Enabling Image Analysis Tools (Joint with University of Edinburgh)
Doney, A. (Investigator), McKenna, S. (Investigator) & Trucco, M. (Investigator)
Engineering and Physical Sciences Research Council
30/04/15 → 29/08/18
Project: Research