TY - JOUR
T1 - Phenolic Michael reaction acceptors
T2 - Combined direct and indirect antioxidant defenses against electrophiles and oxidants
AU - Dinkova-Kostova, A. T.
AU - Cheah, J.
AU - Samouilov, A.
AU - Zweier, J. L.
AU - Bozak, R. E.
AU - Hicks, R. J.
AU - Talalay, P.
PY - 2007/5/1
Y1 - 2007/5/1
N2 - The implications of oxidative stress in the pathogenesis of many chronic human diseases has led to the widely accepted view that low molecular weight antioxidants could be beneficial and postpone or even prevent these diseases. Small molecules of either plant or synthetic origins, which contain Michael acceptor functionalities (olefins or acetylenes conjugated to electron-withdrawing groups) protect against the toxicity of oxidants and electrophiles indirectly, i.e., by inducing phase 2 cytoprotective enzymes. Some of these molecules, e.g., flavonoid and curcuminoid analogues that have phenolic hydroxyl groups in addition to Michael acceptor centers, are also potent direct antioxidants, and may therefore be appropriately designated: bifunctional antioxidants. By use of spectroscopic methods we identified phenolic chalcone and bis(benzylidene)acetone analogues containing one or two Michael acceptor groups, respectively, as very efficient scavengers of two different types of radicals: (a) the nitrogen-centered 2,2′-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS+) radical cation, and (b) the oxygen-centered galvinoxyl (phenoxyl) radical. The most potent scavengers are those also bearing hydroxyl substituents on the aromatic ring(s) at the ortho-position(s). The initial reaction velocities are very rapid and concentration-dependent. In the human keratinocyte cell line HaCaT, the same compounds coordinately increase the intracellular levels of glutathione, glutathione reductase, and thioredoxin reductase. Thus, such bifunctional antioxidants could exert synergistic protective effects against oxidants and electrophiles which represent the principal biological hazards by: (i) scavenging hazardous oxidants directly and immediately; and (ii) inducing the phase 2 response to prevent and resolve the consequences of hazardous processes that are already in progress, i.e., acting indirectly, but with much more diverse and long-lasting effects.
AB - The implications of oxidative stress in the pathogenesis of many chronic human diseases has led to the widely accepted view that low molecular weight antioxidants could be beneficial and postpone or even prevent these diseases. Small molecules of either plant or synthetic origins, which contain Michael acceptor functionalities (olefins or acetylenes conjugated to electron-withdrawing groups) protect against the toxicity of oxidants and electrophiles indirectly, i.e., by inducing phase 2 cytoprotective enzymes. Some of these molecules, e.g., flavonoid and curcuminoid analogues that have phenolic hydroxyl groups in addition to Michael acceptor centers, are also potent direct antioxidants, and may therefore be appropriately designated: bifunctional antioxidants. By use of spectroscopic methods we identified phenolic chalcone and bis(benzylidene)acetone analogues containing one or two Michael acceptor groups, respectively, as very efficient scavengers of two different types of radicals: (a) the nitrogen-centered 2,2′-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS+) radical cation, and (b) the oxygen-centered galvinoxyl (phenoxyl) radical. The most potent scavengers are those also bearing hydroxyl substituents on the aromatic ring(s) at the ortho-position(s). The initial reaction velocities are very rapid and concentration-dependent. In the human keratinocyte cell line HaCaT, the same compounds coordinately increase the intracellular levels of glutathione, glutathione reductase, and thioredoxin reductase. Thus, such bifunctional antioxidants could exert synergistic protective effects against oxidants and electrophiles which represent the principal biological hazards by: (i) scavenging hazardous oxidants directly and immediately; and (ii) inducing the phase 2 response to prevent and resolve the consequences of hazardous processes that are already in progress, i.e., acting indirectly, but with much more diverse and long-lasting effects.
KW - ABTS radical
KW - Direct antioxidant
KW - Galvinoxyl radical
KW - Glutathione
KW - Indirect antioxidant
KW - Phase 2 inducer
KW - Phenolic Michael acceptor
KW - Phenoxyl radical
UR - http://www.scopus.com/inward/record.url?scp=34248661286&partnerID=8YFLogxK
U2 - 10.2174/157340607780620680
DO - 10.2174/157340607780620680
M3 - Article
C2 - 17504197
AN - SCOPUS:34248661286
SN - 1573-4064
VL - 3
SP - 261
EP - 268
JO - Medicinal Chemistry
JF - Medicinal Chemistry
IS - 3
ER -