Projects per year
Abstract
Geoactive soil fungi were examined for their ability to release inorganic phosphate (Pi ) and mediate lead bioprecipitation during growth on organic phosphate substrates. Aspergillus niger and Paecilomyces javanicus grew in 5 mM Pb(NO3)2-containing media amended with glycerol 2-phosphate (G2P) or phytic acid (PyA) as sole P sources, and liberated Pi into the medium. This resulted in almost complete removal of Pb from solution and extensive precipitation of lead-containing minerals around the biomass, confirming the importance of the mycelium as a reactive network for biomineralization. The minerals were identified as pyromorphite (Pb5(PO4)3Cl), only produced by P. javanicus, and lead oxalate (PbC2O4), produced by A. niger and P. javanicus. Geochemical modelling of lead and lead mineral speciation as a function of pH and oxalate closely correlated with experimental conditions and data. Two main lead biomineralization mechanisms were therefore distinguished: pyromorphite formation depending on organic phosphate hydrolysis and lead oxalate formation depending on oxalate excretion. This also indicated species specificity in biomineralization depending on nutrition and physiology. Our findings provide further understanding of lead geomycology and organic phosphates as a biomineralization substrate, and are also relevant to metal immobilization biotechnologies for bioremediation, metal and P biorecovery, and utilization of waste organic phosphates.
Original language | English |
---|---|
Pages (from-to) | 219-231 |
Number of pages | 13 |
Journal | Environmental Microbiology |
Volume | 18 |
Issue number | 1 |
Early online date | 3 Sept 2015 |
DOIs | |
Publication status | Published - Jan 2016 |
Keywords
- Aspergillus niger
- Biochemical processes
- Biodegradation, Environmental
- Glycerophosphates
- Hypocreales
- Lead
- Minerals
- Nitrates
- Oxalates
- Phosphates
- Phosphoric Monoester Hydrolases
- Phytic acid
- Soil
- Soil microbiology
- Journal article
- Research support, Non-U.S. Gov't
Fingerprint
Dive into the research topics of 'Phosphatase-mediated bioprecipitation of lead by soil fungi'. Together they form a unique fingerprint.Projects
- 3 Finished
-
Tellurium and Selenium Cycling and Supply (Joint with Universities of Leicester, Durham, Edinburgh, Cardiff, Aberdeen and Open University and Natural History Museum)
Gadd , G. M. (Investigator)
1/05/15 → 4/03/20
Project: Research
-
COG3: The Geology, Geometallurgy and Geomicrobiology of Cobalt Resources Leading to New Product Streams (joint with Natural History Museum and Universities of Manchester, Bangor, Exeter, Loughborough and Southampton and Industrial Partner)
Gadd , G. M. (Investigator)
1/05/15 → 31/03/21
Project: Research
-
Strategic Award: Wellcome Trust Technology Platform
Blow, J. (Investigator), Lamond, A. (Investigator) & Owen-Hughes, T. (Investigator)
1/01/13 → 30/09/18
Project: Research