Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1

Yu-Chiang Lai, Chandana Kondapalli, Ronny Lehneck, James B. Procter, Brian D. Dill, Helen I. Woodroof, Robert Gourlay, Mark Peggie, Thomas J. Macartney, Olga Corti, Jean-Christophe Corvol, David G. Campbell, Aymelt Itzen, Matthias Trost (Lead / Corresponding author), Miratul MK Muqit (Lead / Corresponding author)

Research output: Contribution to journalArticle

97 Citations (Scopus)

Abstract

Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.

Original languageEnglish
Pages (from-to)2840-2861
Number of pages22
JournalEMBO Journal
Volume34
Issue number22
Early online date16 Oct 2015
DOIs
Publication statusPublished - 12 Nov 2015

Fingerprint Dive into the research topics of 'Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1'. Together they form a unique fingerprint.

  • Projects

    Profiles

    No photo of Miratul Muqit

    Muqit, Miratul

    • MRC PPU - Professor (Clinical) & Personal Chair of Experimental Neurology (Clinical)

    Person: Academic

    Cite this

    Lai, Y-C., Kondapalli, C., Lehneck, R., Procter, J. B., Dill, B. D., Woodroof, H. I., Gourlay, R., Peggie, M., Macartney, T. J., Corti, O., Corvol, J-C., Campbell, D. G., Itzen, A., Trost, M., & Muqit, M. MK. (2015). Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO Journal, 34(22), 2840-2861. https://doi.org/10.15252/embj.201591593