Phosphoproteomics identifies a bimodal EPHA2 receptor switch that promotes embryonic stem cell differentiation

Rosalia Fernandez-Alonso, Francisco Bustos, Manon Budzyk, Pankaj Kumar, Andreas O. Helbig, Jens Hukelmann, Angus I. Lamond, Fredrik Lanner, Houjiang Zhou, Evangelia Petsalaki, Greg M. Findlay (Lead / Corresponding author)

Research output: Contribution to journalArticle

18 Downloads (Pure)

Abstract

Embryonic Stem Cell (ESC) differentiation requires complex cell signalling network dynamics, although the key molecular events remain poorly understood. Here, we use phosphoproteomics to identify an FGF4-mediated phosphorylation switch centred upon the key Ephrin receptor EPHA2 in differentiating ESCs. We show that EPHA2 maintains pluripotency and restrains commitment by antagonising ERK1/2 signalling. Upon ESC differentiation, FGF4 utilises a bimodal strategy to disable EPHA2, which is accompanied by transcriptional induction of EFN ligands. Mechanistically, FGF4-ERK1/2-RSK signalling inhibits EPHA2 via Ser/Thr phosphorylation, whilst FGF4-ERK1/2 disrupts a core pluripotency transcriptional circuit required for Epha2 gene expression. This system also operates in mouse and human embryos, where EPHA receptors are enriched in pluripotent cells whilst surrounding lineage-specified trophectoderm expresses EFNA ligands. Our data provide insight into function and regulation of EPH-EFN signalling in ESCs, and suggest that segregated EPH-EFN expression coordinates cell fate with compartmentalisation during early embryonic development.
Original languageEnglish
Article number1357
Pages (from-to)1-13
Number of pages13
JournalNature Communications
Volume11
Issue number1
Early online date13 Mar 2020
DOIs
Publication statusPublished - 13 Mar 2020

    Fingerprint

Keywords

  • Cell signalling
  • Embryonic stem cells
  • Phosphorylation
  • Proteomics

Cite this