Projects per year
Abstract
Cell differentiation is ubiquitous and facilitates division of labour and development. Bacteria are capable of "multicellular" behaviours that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation a subpopulation of cells differentiate into a specialised population that synthesises the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of DegU phosphate (DegU~P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data are presented demonstrating that this is not a direct regulatory event. We demonstrate that DegU~P controls the frequency of cells activating transcription from the operons needed for matrix biosynthesis in favour of an OFF state. Subsequent experimental analysis led us to conclude that DegU~P functions to increase the level of Spo0A~P, driving cell fate differentiation towards the terminal developmental process of sporulation.
Original language | English |
---|---|
Pages (from-to) | 16-27 |
Number of pages | 10 |
Journal | Journal of Bacteriology |
Volume | 196 |
Issue number | 1 |
Early online date | 11 Oct 2013 |
DOIs | |
Publication status | Published - Jan 2014 |
Fingerprint
Dive into the research topics of 'Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm'. Together they form a unique fingerprint.Projects
- 3 Finished
-
Strategic Award: Wellcome Trust Technology Platform
Blow, J. (Investigator), Lamond, A. (Investigator) & Owen-Hughes, T. (Investigator)
1/01/13 → 30/09/18
Project: Research
-
How to Build a Biofilm
Stanley-Wall, N. (Investigator) & van Aalten, D. (Investigator)
1/01/12 → 30/04/15
Project: Research
-
The Open Microscopy Environment: Image Informatics for Biological Sciences (Joint with Imperial College, Oxford University, Institut Pasteur, Carnegie-Mellon University, University of Wisconsin, Harvard Medical School & University of Edinburgh)
Swedlow, J. (Investigator)
1/10/11 → 30/09/16
Project: Research
Student theses
-
Quantitative Characterisation of Morphological and Phenotypic Changes During Microbial Cell Differentiation and Multicellular Behaviour
Porter, M. (Author), Stanley-Wall, N. (Supervisor) & Swedlow, J. (Supervisor), 2020Student thesis: Doctoral Thesis › Doctor of Philosophy
File