Projects per year
Abstract
Loss of function mutations in the PTEN-induced kinase 1 (PINK1) kinase are causal for autosomal recessive Parkinson's disease (PD) whilst gain of function mutations in the LRRK2 kinase cause autosomal dominant PD. PINK1 indirectly regulates the phosphorylation of a subset of Rab GTPases at a conserved Serine111 (Ser111) residue within the SF3 motif. Using genetic code expansion technologies, we have produced stoichiometric Ser111-phosphorylated Rab8A revealing impaired interactions with its cognate guanine nucleotide exchange factor and GTPase activating protein. In a screen for Rab8A kinases we identify TAK1 and MST3 kinases that can efficiently phosphorylate the Switch II residue Threonine72 (Thr72) in a similar manner as LRRK2 in vitro. Strikingly, we demonstrate that Ser111 phosphorylation negatively regulates the ability of LRRK2 but not MST3 or TAK1 to phosphorylate Thr72 of recombinant nucleotide-bound Rab8A in vitro and demonstrate an interplay of PINK1- and LRRK2-mediated phosphorylation of Rab8A in transfected HEK293 cells. Finally, we present the crystal structure of Ser111-phosphorylated Rab8A and nuclear magnetic resonance structure of Ser111-phosphorylated Rab1B. The structures reveal that the phosphorylated SF3 motif does not induce any major changes, but may interfere with effector-Switch II interactions through intramolecular H-bond formation and/or charge effects with Arg79. Overall, we demonstrate antagonistic regulation between PINK1-dependent Ser111 phosphorylation and LRRK2-mediated Thr72 phosphorylation of Rab8A indicating a potential cross-talk between PINK1-regulated mitochondrial homeostasis and LRRK2 signalling that requires further investigation in vivo.
Original language | English |
---|---|
Pages (from-to) | 1651-1668 |
Number of pages | 18 |
Journal | Biochemical Journal |
Volume | 477 |
Issue number | 9 |
Early online date | 30 Mar 2020 |
DOIs | |
Publication status | Published - 11 May 2020 |
Keywords
- PINK1
- LRRK2
- MST3
- TAK1
- RAB
- GTPASE
- Rab
- GTPase
ASJC Scopus subject areas
- Molecular Biology
- Biochemistry
- Cell Biology
Fingerprint
Dive into the research topics of 'PINK1-dependent phosphorylation of Serine111 within the SF3 motif of Rab GTPases impairs effector interactions and LRRK2 mediated phosphorylation at Threonine72'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Biochemical Analysis of the PINK-1 Parkin Signalling Pathway in Parkinson's Disease (Senior Clinical Fellowship)
Muqit, M. (Investigator)
1/07/13 → 31/12/23
Project: Research