TY - UNPB
T1 - Post-mortem AT-8 reactive tau species correlate with non-plaque Aβ levels in the frontal cortex of non-AD and AD brains
AU - Malik, Nauman
AU - Miah, Mohi-Uddin
AU - Galgani, Alessandro
AU - McAleese, Kirsty E.
AU - Walker, Lauren
AU - LeBeau, Fiona E. N.
AU - Attems, Johannes
AU - Outeiro, Tiago Fleming
AU - Thomas, Alan J.
AU - Koss, David
N1 - 10.1007/s00401-024-02691-4
PY - 2023/9/28
Y1 - 2023/9/28
N2 - The amyloid cascade hypothesis states that Aβ and its aggregates induce pathological changes in tau, leading to formation of neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the temporo-spatial divide between plaques and NFTs. This has been addressed by the inclusion of soluble species of Aβ and tau in the revised amyloid cascade hypothesis, however, the demonstration of a correlative relationship between Aβ and tau burden in post-mortem human tissue has remained elusive. Employing frozen and fixed frontal cortex grey and associated white matter tissue from non-AD controls (Con; n=39) and Alzheimer’s diseases (AD) cases (n=21), biochemical and immunohistochemical measures of Aβ and AT-8 phosphorylated tau were assessed. Native-state dot-blot from crude tissue lysates demonstrated robust correlations between intraregional Aβ and AT-8 tau, such increases in Aβ immunoreactivity conferred increases in AT-8 immunoreactivity, both when considered across the entire cohort as well as separately in Con and AD cases. In contrast, no such association between Aβ plaques and AT-8 were reported when using immunohistochemical measurements. However, when using the non-amyloid precursor protein cross reactive MOAB-2, antibody to measure intracellular Aβ within a subset of cases, a similar correlative relationship with AT-8 tau as that observed in biochemical analysis was observed. Collectively our data suggests that accumulating intracellular Aβ may influence AT-8 pathology. Despite the markedly lower levels of phospho-tau in non-AD controls correlative relationships between AT-8 phospho-tau and Aβ as measured in both biochemical and immunohistochemical assays were more robust in non-AD controls, suggesting a physiological association of Aβ production and tau phosphorylation, at least within the frontal cortex. Such interactions between regional Aβ load and phospho-tau load may become modified with disease potentially, as a consequence of interregional tau seed propagation, and thus may diminish the linear relationship observed between Aβ and phospho-tau in non-AD controls. This study provides evidence supportive of the revised amyloid cascade hypothesis, and demonstrates an associative relationship between AT-8 tau pathology and intracellular Aβ but not extracellular Aβ plaques.
AB - The amyloid cascade hypothesis states that Aβ and its aggregates induce pathological changes in tau, leading to formation of neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the temporo-spatial divide between plaques and NFTs. This has been addressed by the inclusion of soluble species of Aβ and tau in the revised amyloid cascade hypothesis, however, the demonstration of a correlative relationship between Aβ and tau burden in post-mortem human tissue has remained elusive. Employing frozen and fixed frontal cortex grey and associated white matter tissue from non-AD controls (Con; n=39) and Alzheimer’s diseases (AD) cases (n=21), biochemical and immunohistochemical measures of Aβ and AT-8 phosphorylated tau were assessed. Native-state dot-blot from crude tissue lysates demonstrated robust correlations between intraregional Aβ and AT-8 tau, such increases in Aβ immunoreactivity conferred increases in AT-8 immunoreactivity, both when considered across the entire cohort as well as separately in Con and AD cases. In contrast, no such association between Aβ plaques and AT-8 were reported when using immunohistochemical measurements. However, when using the non-amyloid precursor protein cross reactive MOAB-2, antibody to measure intracellular Aβ within a subset of cases, a similar correlative relationship with AT-8 tau as that observed in biochemical analysis was observed. Collectively our data suggests that accumulating intracellular Aβ may influence AT-8 pathology. Despite the markedly lower levels of phospho-tau in non-AD controls correlative relationships between AT-8 phospho-tau and Aβ as measured in both biochemical and immunohistochemical assays were more robust in non-AD controls, suggesting a physiological association of Aβ production and tau phosphorylation, at least within the frontal cortex. Such interactions between regional Aβ load and phospho-tau load may become modified with disease potentially, as a consequence of interregional tau seed propagation, and thus may diminish the linear relationship observed between Aβ and phospho-tau in non-AD controls. This study provides evidence supportive of the revised amyloid cascade hypothesis, and demonstrates an associative relationship between AT-8 tau pathology and intracellular Aβ but not extracellular Aβ plaques.
U2 - 10.1101/2023.09.27.559720
DO - 10.1101/2023.09.27.559720
M3 - Preprint
BT - Post-mortem AT-8 reactive tau species correlate with non-plaque Aβ levels in the frontal cortex of non-AD and AD brains
PB - BioRxiv
ER -