Potent antiplasmodial alkaloids from the rhizobacterium Pantoea agglomerans as hemozoin modulators

Bathini Thissera, Irene Hallyburton, Che Julius Ngwa, Hafsa Cherif-Silini, Ahmed S. I. Hassane, Mark Anderson, Lorna A. Campbell, Nicole Mutter, Manal Eshelli, Usama R. Abdelmohsen, Mohammed Yaseen, Gabriele Pradel, Lassaad Belbahri, Bahaa Elgendy, Lamees Hegazy (Lead / Corresponding author), Mostafa E. Rateb (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.

Original languageEnglish
Article number105215
Number of pages6
JournalBioorganic chemistry
Early online date29 Jul 2021
Publication statusPublished - Oct 2021


  • P. agglomerans
  • Hydroxyquinoline
  • Hydroxyquinolone
  • Plasmodium
  • Hemozoin

ASJC Scopus subject areas

  • Drug Discovery
  • Molecular Biology
  • Biochemistry
  • Organic Chemistry


Dive into the research topics of 'Potent antiplasmodial alkaloids from the rhizobacterium Pantoea agglomerans as hemozoin modulators'. Together they form a unique fingerprint.

Cite this