Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters

Monique H. A. Kester, Sema Bulduk, Hans van Toor, Dick Tibboel, Walter Meinl, Hansruedi Glatt, Charles N. Falany, Michael W. H. Coughtrie, A. Gerlienke Schuur, Abraham Brouwer, Theo J. Visser

    Research output: Contribution to journalArticlepeer-review

    163 Citations (Scopus)

    Abstract

    Polyhalogenated aromatic hydrocarbons (PHAHs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans, polybrominated diphenylethers, and bisphenol A derivatives are persistent environmental pollutants, which are capable of interfering with reproductive and endocrine function in birds, fish, reptiles, and mammals. PHAHs exert estrogenic effects that may be mediated in part by their hydroxylated metabolites (PHAH-OHs), the mechanisms of which remain to be identified. PHAH-OHs show low affinity for the ER. Alternatively, they may exert their estrogenic effects by inhibiting E2 metabolism. As sulfation of E2 by estrogen sulfotransferase (SULT1E1) is an important pathway for E2 inactivation, inhibition of SULT1E1 may lead to an increased bioavailability of estrogens in tissues expressing this enzyme. Therefore, we studied the possible inhibition of human SULT1E1 by hydroxylated PHAH metabolites and the sulfation of the different compounds by SULT1E1. We found marked inhibition of SULT1E1 by various PHAH-OHs, in particular by compounds with two adjacent halogen substituents around the hydroxyl group that were effective at (sub)nanomolar concentrations. Depending on the structure, the inhibition is primarily competitive or noncompetitive. Most PHAH-OHs are also sulfated by SULT1E1. We also investigated the inhibitory effects of the various PHAH-OHs on E2 sulfation by human liver cytosol and found that the effects were strongly correlated with their inhibitions of recombinant SULT1E1 (r = 0.922). Based on these results, we hypothesize that hydroxylated PHAHs exert their estrogenic effects at least in part by inhibiting SULT1E1-catalyzed E2 sulfation.
    Original languageEnglish
    Pages (from-to)1142-1150
    Number of pages9
    JournalJournal of Clinical Endocrinology & Metabolism
    Volume87
    Issue number3
    DOIs
    Publication statusPublished - Mar 2002

    Fingerprint

    Dive into the research topics of 'Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters'. Together they form a unique fingerprint.

    Cite this