Potential Value of Identifying Type 2 Diabetes Subgroups for Guiding Intensive Treatment: A Comparison of Novel Data-Driven Clustering With Risk-Driven Subgroups

Xinyu Li (Lead / Corresponding author), Anoukh van Giessen, Roderick C. Slieker, Joline W. Beulens, James Altunkaya, Ewan R. Pearson, Petra J. M. Elders, Talitha L. Feenstra, Jose Leal

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
163 Downloads (Pure)

Abstract

Objective: To estimate the impact on lifetime health and economic outcomes of different methods of stratifying individuals with type 2 diabetes, followed by guideline-based treatment intensification, targeting BMI and LDL in addition to HbA1c.

Research Design and Methods: We divided 2,935 newly diagnosed individuals from the Hoorn Diabetes Care System (DCS) cohort into five RHAPSODY data-driven clustering subgroups (based on age, BMI, HbA1c, C-peptide and HDL) and four risk-driven subgroups using fixed cut-offs for HbA1c and risk of cardiovascular disease based on guidelines. The UKPDS Outcomes Model 2 estimated discounted expected lifetime complication costs and quality-adjusted life-years (QALYs) for each subgroup and across all individuals. Gains from treatment intensification were compared to “care-as-usual” as observed in DCS. A sensitivity analysis was conducted based on Ahlqvist’s subgroups.

Results: Under care-as-usual, prognosis in the RHAPSODY data-driven subgroups ranged from 7.9 to 12.6 QALYs. Prognosis in the risk-driven subgroups ranged from 6.8 to 12.0 QALYs. Compared to homogenous type 2 diabetes, treatment for individuals in high-risk subgroups could cost 22.0% and 25.3% more and still be cost-effective for data-driven and risk-driven subgroups respectively. Targeting BMI and LDL in addition to HbA1c might deliver up to ten-fold increases in QALYs gained.

Conclusions: Risk-driven subgroups better discriminated regarding prognosis. Both stratification methods supported stratified treatment intensification, with the risk-driven subgroups being somewhat better in identifying individuals with the most potential to benefit from intensive treatment. Irrespective of stratification approach, better cholesterol and weight control showed substantial potential for health gains.
Original languageEnglish
Pages (from-to)1395-1403
Number of pages9
JournalDiabetes Care
Volume46
Issue number7
Early online date5 May 2023
DOIs
Publication statusPublished - Jul 2023

Keywords

  • Type 2 Diabetes
  • Economic Analysis
  • Cost Effectiveness
  • Cost Analysis
  • Disease Modeling
  • Diagnosis/Stratification
  • Reclassification
  • Clusters
  • Guidelines
  • Healthcare
  • Models
  • Healthcare Costs

ASJC Scopus subject areas

  • Advanced and Specialised Nursing
  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint

Dive into the research topics of 'Potential Value of Identifying Type 2 Diabetes Subgroups for Guiding Intensive Treatment: A Comparison of Novel Data-Driven Clustering With Risk-Driven Subgroups'. Together they form a unique fingerprint.

Cite this