Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts

Naeimeh Atabaki-Pasdar, Mattias Ohlsson, Ana Viñuela, Francesca Frau, Hugo Pomares-Millan, Mark Haid, Angus G. Jones, E. Louise Thomas, Robert W. Koivula, Azra Kurbasic, Pascal M. Mutie, Hugo Fitipaldi, Juan Fernandez, Adem Y. Dawed, Giuseppe N. Giordano, Ian M. Forgie, Timothy J. McDonald, Femke Rutters, Henna Cederberg, Elizaveta ChabanovaMatilda Dale, Federico De Masi, Cecilia Engel Thomas, Kristine H. Allin, Tue H. Hansen, Alison Heggie, Mun-Gwan Hong, Petra J. M. Elders, Gwen Kennedy, Tarja Kokkola, Helle Krogh Pedersen, Anubha Mahajan, Donna McEvoy, Francois Pattou, Violeta Raverdy, Ragna S. Häussler, Sapna Sharma, Henrik S. Thomsen, Jagadish Vangipurapu, Henrik Vestergaard, Leen M 't Hart, Jerzy Adamski, Petra B. Musholt, Soren Brage, Søren Brunak, Emmanouil Dermitzakis, Gary Frost, Torben Hansen, Markku Laakso, Oluf Pedersen, Martin Ridderstråle, Hartmut Ruetten, Andrew T. Hattersley, Mark Walker, Joline W. J. Beulens, Andrea Mari, Jochen M. Schwenk, Ramneek Gupta, Mark I. McCarthy, Ewan R. Pearson, Jimmy D. Bell, Imre Pavo, Paul W. Franks

Research output: Contribution to journalArticle

18 Downloads (Pure)

Fingerprint Dive into the research topics of 'Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts'. Together they form a unique fingerprint.

Medicine & Life Sciences