TY - JOUR
T1 - Primary structure of CD52
AU - Treumann, Achim
AU - Lifely, M. Robert
AU - Schneider, Pascal
AU - Ferguson, Michael A. J.
N1 - Medline is the source for the MeSH terms of this document.
PY - 1995/1/1
Y1 - 1995/1/1
N2 - The CD52 antigen was extracted from human spleens with organic solvents and purified by immunoaffinity and reverse-phase chromatography. The latter step resolved two CD52 species, called CD52-I and CD52-II. Both species were found to contain similar N-linked oligosaccharides and glycosylphosphatidylinositol (GPI) anchor glycans. The N-linked oligosaccharides were characterized by methylation linkage analysis and, following exhaustive neuraminidase and endo-ß-galactosidase digestion, by the reagent array analysis method(TM). The results showed that the single CD52 N-glycosylation site is occupied by large sialylated, polylactosamine- containing, core-fucosylated tetraantennary oligosaccharides. The locations of the phosphoryl substituents on the GPI anchor glycan were determined using a new and sensitive method based upon partial acid hydrolysis of the GPI glycan. The difference between CD52-I and CD52-II was in the phosphatidylinositol (PI) moieties of the GPI anchors. The phosphatidylinositol-specific phospholipase C-sensitive CD52-I contained exclusively distearoyl-PI, while the PI-phospholipase C-resistant CD52-II contained predominantly a palmitoylated stearoyl-arachidonoyl-PI, as judged by electrospray ionization mass spectrometry. Tandem mass spectrometric studies indicated that the palmitoyl residue of the CD52-II anchor is attached to the 2-position of the myo-inositol ring. Both the CD52-I and CD52-II PI structures are unusual for GPI anchors and the possible significance of this is discussed. The alkali-lability of the CD52 epitope recognized by the Campath-1H monoclonal antibody was studied. The data suggest that the alkali-labile hydroxyester-linked fatty acids of the GPI anchor are necessary for antibody binding.
AB - The CD52 antigen was extracted from human spleens with organic solvents and purified by immunoaffinity and reverse-phase chromatography. The latter step resolved two CD52 species, called CD52-I and CD52-II. Both species were found to contain similar N-linked oligosaccharides and glycosylphosphatidylinositol (GPI) anchor glycans. The N-linked oligosaccharides were characterized by methylation linkage analysis and, following exhaustive neuraminidase and endo-ß-galactosidase digestion, by the reagent array analysis method(TM). The results showed that the single CD52 N-glycosylation site is occupied by large sialylated, polylactosamine- containing, core-fucosylated tetraantennary oligosaccharides. The locations of the phosphoryl substituents on the GPI anchor glycan were determined using a new and sensitive method based upon partial acid hydrolysis of the GPI glycan. The difference between CD52-I and CD52-II was in the phosphatidylinositol (PI) moieties of the GPI anchors. The phosphatidylinositol-specific phospholipase C-sensitive CD52-I contained exclusively distearoyl-PI, while the PI-phospholipase C-resistant CD52-II contained predominantly a palmitoylated stearoyl-arachidonoyl-PI, as judged by electrospray ionization mass spectrometry. Tandem mass spectrometric studies indicated that the palmitoyl residue of the CD52-II anchor is attached to the 2-position of the myo-inositol ring. Both the CD52-I and CD52-II PI structures are unusual for GPI anchors and the possible significance of this is discussed. The alkali-lability of the CD52 epitope recognized by the Campath-1H monoclonal antibody was studied. The data suggest that the alkali-labile hydroxyester-linked fatty acids of the GPI anchor are necessary for antibody binding.
UR - http://www.scopus.com/inward/record.url?scp=0028964750&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.11.6088
DO - 10.1074/jbc.270.11.6088
M3 - Article
AN - SCOPUS:0028964750
SN - 0021-9258
VL - 270
SP - 6088
EP - 6099
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 11
ER -