TY - JOUR
T1 - Priori-block sparse Bayesian learning algorithm for compressed sensing based ECG recovery
AU - Luo, Kan
AU - Li, Jianqing
AU - Wang, Zhiqang
AU - Cai, Zhipeng
PY - 2014/8
Y1 - 2014/8
N2 - Compressed sensing (CS) has advantages in low-cost, low-power and long term wireless electorcardiogram(ECG) applications. However, there are some problems in existing reconstruction algorithms, which include the unsatisfied signal quality, huge computation task and no-adaptive to noise. To accurately reconstruct the non-sparse ECG signal, a priori block sparse Bayesian learning (P-BSBL) algorithm is proposed in this paper. Based on the block sparse Bayesian learning, the P-BSBL introduces priori of ECG signals to enhance the performance of the algorithm, which adopts the " nearby" zero solution space as the initial values and the signal statistical characteristic as the stop condition. The numerical experiments on MIT-BIH ECG database were conducted to verify the algorithm. The results show that the proposed method can efficiently reconstruct the non-sparse ECG signal with high signal quality. The P-BSBL has better performance compared with the convex optimization and greed methods; and it is more suitable for the ECG signal reconstruction with high data compression ratio and variable signal-to-noise ratio.
AB - Compressed sensing (CS) has advantages in low-cost, low-power and long term wireless electorcardiogram(ECG) applications. However, there are some problems in existing reconstruction algorithms, which include the unsatisfied signal quality, huge computation task and no-adaptive to noise. To accurately reconstruct the non-sparse ECG signal, a priori block sparse Bayesian learning (P-BSBL) algorithm is proposed in this paper. Based on the block sparse Bayesian learning, the P-BSBL introduces priori of ECG signals to enhance the performance of the algorithm, which adopts the " nearby" zero solution space as the initial values and the signal statistical characteristic as the stop condition. The numerical experiments on MIT-BIH ECG database were conducted to verify the algorithm. The results show that the proposed method can efficiently reconstruct the non-sparse ECG signal with high signal quality. The P-BSBL has better performance compared with the convex optimization and greed methods; and it is more suitable for the ECG signal reconstruction with high data compression ratio and variable signal-to-noise ratio.
UR - http://www.scopus.com/inward/record.url?scp=84907249349&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:84907249349
SN - 0254-3087
VL - 35
SP - 1883
EP - 1889
JO - Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument
JF - Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument
IS - 8
ER -