Projects per year
Abstract
Biofilm formation by Bacillus subtilis is a communal process that culminates in the formation of architecturally complex multicellular communities. Here we reveal that the transition of the biofilm into a nonexpanding phase constitutes a distinct step in the process of biofilm development. Using genetic analysis we show that B. subtilis strains lacking the ability to synthesize pulcherriminic acid form biofilms that sustain the expansion phase, thereby linking pulcherriminic acid to growth arrest. However, production of pulcherriminic acid is not sufficient to block expansion of the biofilm. It needs to be secreted into the extracellular environment where it chelates Fe 3+ from the growth medium in a nonenzymatic reaction. Utilizing mathematical modeling and a series of experimental methodologies we show that when the level of freely available iron in the environment drops below a critical threshold, expansion of the biofilm stops. Bioinformatics analysis allows us to identify the genes required for pulcherriminic acid synthesis in other Firmicutes but the patchwork presence both within and across closely related species suggests loss of these genes through multiple independent recombination events. The seemingly counterintuitive self-restriction of growth led us to explore if there were any benefits associated with pulcherriminic acid production. We identified that pulcherriminic acid producers can prevent invasion by neighboring communities through the generation of an “iron-free” zone, thereby addressing the paradox of pulcherriminic acid production by B. subtilis.
Original language | English |
---|---|
Pages (from-to) | 13553-13562 |
Number of pages | 10 |
Journal | Proceedings of the National Academy of Sciences |
Volume | 116 |
Issue number | 27 |
Early online date | 19 Jun 2019 |
DOIs | |
Publication status | Published - 2 Jul 2019 |
Keywords
- Bacillus subtilis
- Biofilm
- Growth arrest
- Pulcherrimin
ASJC Scopus subject areas
- General
Fingerprint
Dive into the research topics of 'Pulcherrimin formation controls growth arrest of the Bacillus subtilis biofilm'. Together they form a unique fingerprint.Projects
- 4 Finished
-
IKC Biofilms (Collaboration with University of Southampton via University of Edinburgh)
Stanley-Wall, N. (Investigator)
Biotechnology and Biological Sciences Research Council
1/12/17 → 30/11/22
Project: Research
-
Architecture of a Biofilm (Joint with University of Edinburgh)
Campbell, P. (Investigator), Davidson, F. (Investigator), Ferguson, M. (Investigator), Stanley-Wall, N. (Investigator) & Swedlow, J. (Investigator)
Biotechnology and Biological Sciences Research Council
1/02/17 → 31/07/23
Project: Research
-
Strategic Award: Wellcome Trust Technology Platform
Blow, J. (Investigator), Lamond, A. (Investigator) & Owen-Hughes, T. (Investigator)
1/01/13 → 30/09/18
Project: Research
Student theses
-
Bacillus subtilis biofilms and intra-species interactions
Kalamara, M. (Author), Stanley-Wall, N. (Supervisor) & MacPhee, C. E. (Supervisor), 2023Student thesis: Doctoral Thesis › Doctor of Philosophy
-
Quantitative Characterisation of Morphological and Phenotypic Changes During Microbial Cell Differentiation and Multicellular Behaviour
Porter, M. (Author), Stanley-Wall, N. (Supervisor) & Swedlow, J. (Supervisor), 2020Student thesis: Doctoral Thesis › Doctor of Philosophy
File