Projects per year
Abstract
Gain-of-function mutations in LRRK2, which encodes the leucine-rich repeat kinase 2 (LRRK2), are the most common genetic cause of late-onset Parkinson’s disease. LRRK2 is recruited to membrane organelles and activated by Rab29, a Rab guanosine triphosphatase encoded in the PARK16 locus. We present cryo–electron microscopy structures of Rab29–LRRK2 complexes in three oligomeric states, providing key snapshots during LRRK2 recruitment and activation. Rab29 induces an unexpected tetrameric assembly of LRRK2, formed by two kinase-active central protomers and two kinase-inactive peripheral protomers. The central protomers resemble the active-like state trapped by the type I kinase inhibitor DNL201, a compound that underwent a phase 1 clinical trial. Our work reveals the structural mechanism of LRRK2 spatial regulation and provides insights into LRRK2 inhibitor design for Parkinson’s disease treatment.
Original language | English |
---|---|
Pages (from-to) | 1404-1411 |
Number of pages | 8 |
Journal | Science |
Volume | 382 |
Issue number | 6677 |
Early online date | 21 Dec 2023 |
DOIs | |
Publication status | Published - 22 Dec 2023 |
ASJC Scopus subject areas
- General
Fingerprint
Dive into the research topics of 'Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2'. Together they form a unique fingerprint.Projects
- 1 Active
-
ASAP - Mapping the LRRK2 Signalling Pathway and its Interplay with other Parkinson's Disease Components
Alessi, D. (Investigator) & Muqit, M. (Investigator)
Aligning Science Across Parkinson's (ASAP), Michael J. Fox Foundation for Parkinson's Research
1/10/20 → 1/10/24
Project: Research