Radiomics-based machine learning approach for the prediction of grade and stage in upper urinary tract urothelial carcinoma: a step towards virtual biopsy

Abdulsalam Alqahtani, Sourav Bhattacharjee, Abdulrahman Almopti, Chunhui Li, Ghulam Nabi (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

3 Downloads (Pure)


Objectives: Upper tract urothelial carcinoma (UTUC) is a rare, aggressive lesion, with early detection a key to its management. This study aimed to utilise computed tomographic urogram data to develop machine learning models for predicting tumour grading and staging in upper urothelial tract carcinoma patients and to compare these predictions with histopathological diagnosis used as reference standards.
Methods: Protocol-based computed tomographic urogram data from 106 patients were obtained and visualised in 3D. Digital segmentation of the tumours was conducted by extracting textural radiomics features. They were further classified using 11 predictive models. The predicted grades and stages were compared to the histopathology of radical nephroureterectomy specimens.
Results: Classifier models worked well in mining the radiomics data and delivered satisfactory predictive machine learning models. The multilayer panel showed 84% sensitivity and 93% specificity while predicting UTUC grades. The Logistic Regression model showed a sensitivity of 83% and a specificity of 76% while staging. Similarly, other classifier algorithms [e.g. Support Vector classifier (SVC)] provided a highly accurate prediction while grading UTUC compared to clinical features alone or ureteroscopic biopsy histopathology.
Conclusion: Data mining tools could handle medical imaging datasets from small (<2 cm) tumours for UTUC. The radiomics-based machine learning algorithms provide a potential tool to model tumour grading and staging with implications for clinical practice and the upgradation of current paradigms in cancer diagnostics.
Clinical Relevance: Machine learning based on radiomics features can predict upper tract urothelial cancer grading and staging with significant improvement over ureteroscopic histopathology. The study showcased the prowess of such emerging tools in the set objectives with implications towards virtual biopsy.
Original languageEnglish
Pages (from-to)3258-3268
Number of pages11
JournalInternational journal of surgery (London, England)
Issue number6
Early online date3 May 2024
Publication statusPublished - Jun 2024


  • CT urogram
  • machine learning
  • radiomics
  • texture analysis
  • virtual biopsy


Dive into the research topics of 'Radiomics-based machine learning approach for the prediction of grade and stage in upper urinary tract urothelial carcinoma: a step towards virtual biopsy'. Together they form a unique fingerprint.

Cite this