Random super-prism wavelength meter

Michael Mazilu (Lead / Corresponding author), Tom Vettenburg, Andrea Di Falco, Kishan Dholakia

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

The speckle pattern arising from a thin random, disordered scatterer may be used to detect the transversal mode of an incident beam. On the other hand, speckle patterns originating from meter-long multimode fibers can be used to detect different wavelengths. Combining these approaches, we develop a method that uses a thin random scattering medium to measure the wavelength of a near-infrared laser beam with picometer resolution. The method is based on the application of principal component analysis, which is used for pattern recognition and is applied here to the case of speckle pattern categorization.

Original languageEnglish
Pages (from-to)96-99
Number of pages4
JournalOptics Letters
Volume39
Issue number1
DOIs
Publication statusPublished - 1 Jan 2014

Fingerprint Dive into the research topics of 'Random super-prism wavelength meter'. Together they form a unique fingerprint.

  • Profiles

    No photo of Tom Vettenburg

    Vettenburg, Tom

    • Physics - Lecturer (Teaching and Research)

    Person: Academic

    Cite this