Relative Abundance of Transcripts (RATs): Identifying differential isoform abundance from RNA-seq [version 1; referees: 1 approved, 2 approved with reservations]

Kimon Froussios, Kira Mourao, Gordon Simpson, Geoffrey Barton, Nicholas Schurch (Lead / Corresponding author)

Research output: Contribution to journalArticle

35 Downloads (Pure)

Abstract

The biological importance of changes in RNA expression is reflected by the wide variety of tools available to characterise these changes from RNA-seq data. Several tools exist for detecting differential transcript isoform usage (DTU) from aligned or assembled RNA-seq data, but few exist for DTU detection from alignment-free RNA-seq quantifications. We present the RATs, an R package that identifies DTU transcriptome-wide directly from transcript abundance estimates. RATs is unique in applying bootstrapping to estimate the reliability of detected DTU events and shows good performance at all replication levels (median false positive fraction < 0.05). We compare RATs to two existing DTU tools, DRIM-Seq & SUPPA2, using two publicly available simulated RNA-seq datasets and a published human RNA-seq dataset, in which 248 genes have been previously identified as displaying significant DTU. RATs with default threshold values on the simulated Human data has a sensitivity of 0.55, a Matthews correlation coefficient of 0.71 and a false discovery rate (FDR) of 0.04, outperforming both other tools. Applying the same thresholds for SUPPA2 results in a higher sensitivity (0.61) but poorer FDR performance (0.33). RATs and DRIM-seq use different methods for measuring DTU effect-sizes complicating the comparison of results between these tools, however, for a likelihood-ratio threshold of 30, DRIM-Seq has similar FDR performance to RATs (0.06), but worse sensitivity (0.47). These differences persist for the simulated drosophila dataset. On the published human RNA-seq dataset the greatest agreement between the tools tested is 53%, observed between RATs and SUPPA2. The bootstrapping quality filter in RATs is responsible for removing the majority of DTU events called by SUPPA2 that are not reported by RATs. All methods, including the previously published qRT-PCR of three of the 248 detected DTU events, were found to be sensitive to annotation differences between Ensembl v60 and v87.
Original languageEnglish
Article number213
Pages (from-to)1-20
Number of pages20
JournalF1000 Research
Volume8
DOIs
Publication statusPublished - 24 Feb 2019

Fingerprint

RNA Isoforms
Protein Isoforms
RNA
Transcriptome
Drosophila
Genes
Polymerase Chain Reaction

Keywords

  • Algorithms
  • Differential Isoform Usage
  • Feature selection
  • Gene regulation
  • Transcriptional regulation
  • Transcriptomics
  • Visualization

Cite this

@article{abc4385a7814488ebd7979a97e23cc72,
title = "Relative Abundance of Transcripts (RATs): Identifying differential isoform abundance from RNA-seq [version 1; referees: 1 approved, 2 approved with reservations]",
abstract = "The biological importance of changes in RNA expression is reflected by the wide variety of tools available to characterise these changes from RNA-seq data. Several tools exist for detecting differential transcript isoform usage (DTU) from aligned or assembled RNA-seq data, but few exist for DTU detection from alignment-free RNA-seq quantifications. We present the RATs, an R package that identifies DTU transcriptome-wide directly from transcript abundance estimates. RATs is unique in applying bootstrapping to estimate the reliability of detected DTU events and shows good performance at all replication levels (median false positive fraction < 0.05). We compare RATs to two existing DTU tools, DRIM-Seq & SUPPA2, using two publicly available simulated RNA-seq datasets and a published human RNA-seq dataset, in which 248 genes have been previously identified as displaying significant DTU. RATs with default threshold values on the simulated Human data has a sensitivity of 0.55, a Matthews correlation coefficient of 0.71 and a false discovery rate (FDR) of 0.04, outperforming both other tools. Applying the same thresholds for SUPPA2 results in a higher sensitivity (0.61) but poorer FDR performance (0.33). RATs and DRIM-seq use different methods for measuring DTU effect-sizes complicating the comparison of results between these tools, however, for a likelihood-ratio threshold of 30, DRIM-Seq has similar FDR performance to RATs (0.06), but worse sensitivity (0.47). These differences persist for the simulated drosophila dataset. On the published human RNA-seq dataset the greatest agreement between the tools tested is 53{\%}, observed between RATs and SUPPA2. The bootstrapping quality filter in RATs is responsible for removing the majority of DTU events called by SUPPA2 that are not reported by RATs. All methods, including the previously published qRT-PCR of three of the 248 detected DTU events, were found to be sensitive to annotation differences between Ensembl v60 and v87.",
keywords = "Algorithms, Differential Isoform Usage, Feature selection, Gene regulation, Transcriptional regulation, Transcriptomics, Visualization",
author = "Kimon Froussios and Kira Mourao and Gordon Simpson and Geoffrey Barton and Nicholas Schurch",
note = "This work has been supported by the Biotechnology and Biological Sciences Research Council grants [BB/H002286/1; BB/J00247X/1; BB/M010066/1; BB/M004155/1] and the Wellcome Trust Strategic Awards [098439/Z/12/Z and WT097945].",
year = "2019",
month = "2",
day = "24",
doi = "10.12688/f1000research.17916.1",
language = "English",
volume = "8",
pages = "1--20",
journal = "F1000 Research",
issn = "2046-1402",
publisher = "F1000Research",

}

TY - JOUR

T1 - Relative Abundance of Transcripts (RATs)

T2 - Identifying differential isoform abundance from RNA-seq [version 1; referees: 1 approved, 2 approved with reservations]

AU - Froussios, Kimon

AU - Mourao, Kira

AU - Simpson, Gordon

AU - Barton, Geoffrey

AU - Schurch, Nicholas

N1 - This work has been supported by the Biotechnology and Biological Sciences Research Council grants [BB/H002286/1; BB/J00247X/1; BB/M010066/1; BB/M004155/1] and the Wellcome Trust Strategic Awards [098439/Z/12/Z and WT097945].

PY - 2019/2/24

Y1 - 2019/2/24

N2 - The biological importance of changes in RNA expression is reflected by the wide variety of tools available to characterise these changes from RNA-seq data. Several tools exist for detecting differential transcript isoform usage (DTU) from aligned or assembled RNA-seq data, but few exist for DTU detection from alignment-free RNA-seq quantifications. We present the RATs, an R package that identifies DTU transcriptome-wide directly from transcript abundance estimates. RATs is unique in applying bootstrapping to estimate the reliability of detected DTU events and shows good performance at all replication levels (median false positive fraction < 0.05). We compare RATs to two existing DTU tools, DRIM-Seq & SUPPA2, using two publicly available simulated RNA-seq datasets and a published human RNA-seq dataset, in which 248 genes have been previously identified as displaying significant DTU. RATs with default threshold values on the simulated Human data has a sensitivity of 0.55, a Matthews correlation coefficient of 0.71 and a false discovery rate (FDR) of 0.04, outperforming both other tools. Applying the same thresholds for SUPPA2 results in a higher sensitivity (0.61) but poorer FDR performance (0.33). RATs and DRIM-seq use different methods for measuring DTU effect-sizes complicating the comparison of results between these tools, however, for a likelihood-ratio threshold of 30, DRIM-Seq has similar FDR performance to RATs (0.06), but worse sensitivity (0.47). These differences persist for the simulated drosophila dataset. On the published human RNA-seq dataset the greatest agreement between the tools tested is 53%, observed between RATs and SUPPA2. The bootstrapping quality filter in RATs is responsible for removing the majority of DTU events called by SUPPA2 that are not reported by RATs. All methods, including the previously published qRT-PCR of three of the 248 detected DTU events, were found to be sensitive to annotation differences between Ensembl v60 and v87.

AB - The biological importance of changes in RNA expression is reflected by the wide variety of tools available to characterise these changes from RNA-seq data. Several tools exist for detecting differential transcript isoform usage (DTU) from aligned or assembled RNA-seq data, but few exist for DTU detection from alignment-free RNA-seq quantifications. We present the RATs, an R package that identifies DTU transcriptome-wide directly from transcript abundance estimates. RATs is unique in applying bootstrapping to estimate the reliability of detected DTU events and shows good performance at all replication levels (median false positive fraction < 0.05). We compare RATs to two existing DTU tools, DRIM-Seq & SUPPA2, using two publicly available simulated RNA-seq datasets and a published human RNA-seq dataset, in which 248 genes have been previously identified as displaying significant DTU. RATs with default threshold values on the simulated Human data has a sensitivity of 0.55, a Matthews correlation coefficient of 0.71 and a false discovery rate (FDR) of 0.04, outperforming both other tools. Applying the same thresholds for SUPPA2 results in a higher sensitivity (0.61) but poorer FDR performance (0.33). RATs and DRIM-seq use different methods for measuring DTU effect-sizes complicating the comparison of results between these tools, however, for a likelihood-ratio threshold of 30, DRIM-Seq has similar FDR performance to RATs (0.06), but worse sensitivity (0.47). These differences persist for the simulated drosophila dataset. On the published human RNA-seq dataset the greatest agreement between the tools tested is 53%, observed between RATs and SUPPA2. The bootstrapping quality filter in RATs is responsible for removing the majority of DTU events called by SUPPA2 that are not reported by RATs. All methods, including the previously published qRT-PCR of three of the 248 detected DTU events, were found to be sensitive to annotation differences between Ensembl v60 and v87.

KW - Algorithms

KW - Differential Isoform Usage

KW - Feature selection

KW - Gene regulation

KW - Transcriptional regulation

KW - Transcriptomics

KW - Visualization

UR - http://www.scopus.com/inward/record.url?scp=85063713341&partnerID=8YFLogxK

U2 - 10.12688/f1000research.17916.1

DO - 10.12688/f1000research.17916.1

M3 - Article

C2 - 30906538

VL - 8

SP - 1

EP - 20

JO - F1000 Research

JF - F1000 Research

SN - 2046-1402

M1 - 213

ER -