TY - JOUR
T1 - Relocalization of late blight resistance protein r3a to endosomal compartments is associated with effector recognition and required for the immune response.
AU - Engelhardt, Stefan
AU - Boevink, Petra C.
AU - Armstrong, Miles R.
AU - Ramos, Maria Brisa
AU - Hein, Ingo
AU - Birch, Paul R.J.
PY - 2012/12
Y1 - 2012/12
N2 - An important objective of plant-pathogen interactions research is to determine where resistance proteins detect pathogen effectors to mount an immune response. Many nucleotide binding-Leucine-rich repeat (NB-LRR) resistance proteins accumulate in the plant nucleus following effector recognition, where they initiate the hypersensitive response (HR). Here, we show that potato (Solanum tuberosum) resistance protein R3a relocates from the cytoplasm to endosomal compartments only when coexpressed with recognized Phytophthora infestans effector form AVR3a(KI) and not unrecognized form AVR3a(EM). Moreover, AVR3a(KI), but not AVR3a(EM), is also relocalized to endosomes in the presence of R3a. Both R3a and AVR3a(KI) colocalized in close physical proximity at endosomes in planta. Treatment with brefeldin A (BFA) or wortmannin, inhibitors of the endocytic cycle, attenuated both the relocalization of R3a to endosomes and the R3a-mediated HR. No such effect of these inhibitors was observed on HRs triggered by the gene-for-gene pairs Rx1/PVX-CP and Sto1/IpiO1. An R3a(D501V) autoactive MHD mutant, which triggered HR in the absence of AVR3a(KI), failed to localize to endosomes. Moreover, BFA and wortmannin did not alter cell death triggered by this mutant. We conclude that effector recognition and consequent HR signaling by NB-LRR resistance protein R3a require its relocalization to vesicles in the endocytic pathway.
AB - An important objective of plant-pathogen interactions research is to determine where resistance proteins detect pathogen effectors to mount an immune response. Many nucleotide binding-Leucine-rich repeat (NB-LRR) resistance proteins accumulate in the plant nucleus following effector recognition, where they initiate the hypersensitive response (HR). Here, we show that potato (Solanum tuberosum) resistance protein R3a relocates from the cytoplasm to endosomal compartments only when coexpressed with recognized Phytophthora infestans effector form AVR3a(KI) and not unrecognized form AVR3a(EM). Moreover, AVR3a(KI), but not AVR3a(EM), is also relocalized to endosomes in the presence of R3a. Both R3a and AVR3a(KI) colocalized in close physical proximity at endosomes in planta. Treatment with brefeldin A (BFA) or wortmannin, inhibitors of the endocytic cycle, attenuated both the relocalization of R3a to endosomes and the R3a-mediated HR. No such effect of these inhibitors was observed on HRs triggered by the gene-for-gene pairs Rx1/PVX-CP and Sto1/IpiO1. An R3a(D501V) autoactive MHD mutant, which triggered HR in the absence of AVR3a(KI), failed to localize to endosomes. Moreover, BFA and wortmannin did not alter cell death triggered by this mutant. We conclude that effector recognition and consequent HR signaling by NB-LRR resistance protein R3a require its relocalization to vesicles in the endocytic pathway.
UR - http://www.scopus.com/inward/record.url?scp=84873043714&partnerID=8YFLogxK
U2 - 10.1105/tpc.112.104992
DO - 10.1105/tpc.112.104992
M3 - Article
C2 - 23243124
AN - SCOPUS:84873043714
VL - 24
SP - 5142
EP - 5158
JO - Plant Cell
JF - Plant Cell
SN - 1040-4651
IS - 12
ER -