Runge-Kutta solutions of a hyperbolic conservation law with source term

Mark A. Aves, David Griffiths, Desmond. J. Higham

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)
    293 Downloads (Pure)

    Abstract

    Spurious long-term solutions of a finite-difference method for a hyperbolic conservation law with a general nonlinear source term are studied. Results are contrasted with those that have been established for nonlinear ordinary differential equations. Various types of spurious behavior are examined, including spatially uniform equilibria that exist for arbitrarily small time-steps, nonsmooth steady states with profiles that jump between fixed levels, and solutions with oscillations that arise from nonnormality and exist only in finite precision arithmetic. It appears that spurious behavior is associated in general with insufficient spatial resolution. The potential for curbing spuriosity by using adaptivity in space or time is also considered.
    Original languageEnglish
    Pages (from-to)20-38
    Number of pages19
    JournalSIAM Journal on Scientific Computing
    Volume22
    Issue number1
    DOIs
    Publication statusPublished - 2000

    Keywords

    • Adaptivity
    • Finite differences
    • Nonnormality
    • Spurious solution
    • Steady state

    Fingerprint

    Dive into the research topics of 'Runge-Kutta solutions of a hyperbolic conservation law with source term'. Together they form a unique fingerprint.

    Cite this