TY - JOUR
T1 - Selection in mixtures of food particles during oral processing in man
AU - van der Glas, Hilbert W.
AU - Kim, Esther H.-J.
AU - Mustapa, Anis Z.
AU - Elmanaseer, Wijdan R.
N1 - This study was financially supported by the University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands and by the Margaret Hogg-Stec Memorial scholarship from The New Zealand Institute for Plant & Food Research Limited, New Zealand.
PY - 2018/1
Y1 - 2018/1
N2 - Objectives: Two processes underlie food comminution during chewing: (1) selection, i.e. every particle has a chance of being placed between the teeth and being subjected to (2) breakage. Selection decreases with particle number by saturation of breakage sites, and it depends on competition between smaller and larger particles for breakage sites. Theoretical models were tested which describe competition between various sizes X. In the one-way model, small particles cannot compete with larger ones because of their smaller height. In the two-way model, small particles may compete when piled between antagonistic teeth.Design: Five subjects participated in one-chew experiments on cubes made of Optosil(®). The critical particle number (nc(X)) at which saturation starts, and the number of breakage sites (nb(X)) were determined by varying particle numbers (nX) for single-sized cubes of 1.7-6.8mm. Using nc(X) and nb(X), the models predicted relationships between number of selected particles (ns(X)) and nX in one-chew experiments using simple mixtures with only two sizes. A fixed number (mean 6 or 26) of larger cubes (X=6.8 or 3.4mm) was mixed with various numbers (16-1024) of smaller cubes (X=4.8, 2.4 or 1.7mm), thus varying the factors X, nX, and possible particle piling (for X<4mm).Results: The one-way model was largely followed with small numbers of smaller particles and the two-way model with large numbers.Conclusions: The two-way model applies to chewing a food which yields a loose aggregation of different-sized particles following an initial phase, whereas other circumstances may be favourable for the one-way model. As conditions of a food bolus can be approached by embedding hard Optosil particles in a soft medium, the models will, apart from dentistry, be of interest for controlling flavour release in food engineering.
AB - Objectives: Two processes underlie food comminution during chewing: (1) selection, i.e. every particle has a chance of being placed between the teeth and being subjected to (2) breakage. Selection decreases with particle number by saturation of breakage sites, and it depends on competition between smaller and larger particles for breakage sites. Theoretical models were tested which describe competition between various sizes X. In the one-way model, small particles cannot compete with larger ones because of their smaller height. In the two-way model, small particles may compete when piled between antagonistic teeth.Design: Five subjects participated in one-chew experiments on cubes made of Optosil(®). The critical particle number (nc(X)) at which saturation starts, and the number of breakage sites (nb(X)) were determined by varying particle numbers (nX) for single-sized cubes of 1.7-6.8mm. Using nc(X) and nb(X), the models predicted relationships between number of selected particles (ns(X)) and nX in one-chew experiments using simple mixtures with only two sizes. A fixed number (mean 6 or 26) of larger cubes (X=6.8 or 3.4mm) was mixed with various numbers (16-1024) of smaller cubes (X=4.8, 2.4 or 1.7mm), thus varying the factors X, nX, and possible particle piling (for X<4mm).Results: The one-way model was largely followed with small numbers of smaller particles and the two-way model with large numbers.Conclusions: The two-way model applies to chewing a food which yields a loose aggregation of different-sized particles following an initial phase, whereas other circumstances may be favourable for the one-way model. As conditions of a food bolus can be approached by embedding hard Optosil particles in a soft medium, the models will, apart from dentistry, be of interest for controlling flavour release in food engineering.
KW - Food comminution
KW - Mastication
KW - Mixture
KW - Modelling
KW - Selection
UR - http://www.scopus.com/inward/record.url?scp=85033572751&partnerID=8YFLogxK
U2 - 10.1016/j.archoralbio.2017.10.006
DO - 10.1016/j.archoralbio.2017.10.006
M3 - Article
C2 - 29128587
SN - 0003-9969
VL - 85
SP - 212
EP - 225
JO - Archives of Oral Biology
JF - Archives of Oral Biology
ER -