Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin

Morgan D. Fullerton, Sandra Galic, Katarina Marcinko, Sarah Sikkema, Thomas Pulinilkunnil, Zhi-Ping Chen, Hayley M. O'Neill, Rebecca J. Ford, Rengasamy Palanivel, Matthew O'Brien, D. Grahame. Hardie, S. Lance Macaulay, Jonathan D. Schertzer, Jason R.B. Dyck, Bryce J. van Denderen, Bruce E. Kemp, Gregory R. Steinberg

    Research output: Contribution to journalArticle

    359 Citations (Scopus)

    Abstract

    The obesity epidemic has led to an increased incidence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. AMP-activated protein kinase (Ampk) regulates energy homeostasis and is activated by cellular stress, hormones and the widely prescribed type 2 diabetes drug metformin. Ampk phosphorylates mouse acetyl-CoA carboxylase 1 (Acc1; refs. 3,4) at Ser79 and Acc2 at Ser212, inhibiting the conversion of acetyl-CoA to malonyl-CoA. The latter metabolite is a precursor in fatty acid synthesis and an allosteric inhibitor of fatty acid transport into mitochondria for oxidation. To test the physiological impact of these phosphorylation events, we generated mice with alanine knock-in mutations in both Acc1 (at Ser79) and Acc2 (at Ser212) (Acc double knock-in, AccDKI). Compared to wild-type mice, these mice have elevated lipogenesis and lower fatty acid oxidation, which contribute to the progression of insulin resistance, glucose intolerance and NAFLD, but not obesity. Notably, AccDKI mice made obese by high-fat feeding are refractory to the lipid-lowering and insulin-sensitizing effects of metformin. These findings establish that inhibitory phosphorylation of Acc by Ampk is essential for the control of lipid metabolism and, in the setting of obesity, for metformin-induced improvements in insulin action.
    Original languageEnglish
    Pages (from-to)1649-1654
    Number of pages6
    JournalNature Medicine
    Volume19
    DOIs
    Publication statusPublished - 2013

    Fingerprint Dive into the research topics of 'Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin'. Together they form a unique fingerprint.

  • Cite this

    Fullerton, M. D., Galic, S., Marcinko, K., Sikkema, S., Pulinilkunnil, T., Chen, Z-P., O'Neill, H. M., Ford, R. J., Palanivel, R., O'Brien, M., Hardie, D. G., Macaulay, S. L., Schertzer, J. D., Dyck, J. R. B., van Denderen, B. J., Kemp, B. E., & Steinberg, G. R. (2013). Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nature Medicine, 19, 1649-1654. https://doi.org/10.1038/nm.3372